7. Перенесіть таблицю в зошит і заповніть і, якщо Р. Р. S. S - ne риметри і площі двох подібних фігур, k- коефіцієнт подібності. Р. 8, Р. S 2 5 16 12 3 48 5 90 10 0,6 10 72
В треугольнике СDE угол СDE = 90 градусов, т.к. DE перп. DC по условию, тогда ЕС - гипотенуза. Проведём из точки D к гипотенузе медиану DM, медиана из вершины прямого угла равна половине гипотенузы, тогда DM = EC/2=1. Треугольник DMC - равнобедренный, тогда углы MDC и MCD равны, но СD - биссектриса, значит углы ВСD и DCM также равны, т.е. углы MDC и BCD равны, значит медиана DM параллельна стороне ВС, т.к. равны накрест лежащие углы при секущей DС, тогда углы ADM и АВС равны как соответственные углы при параллельных прямых, тогда треугольники ADM и АВС подобны по 2 углам, значит AD/DM=AB/BC, но АВ=ВС, т.к. исходный треугольник равнобедренный, т.е. AD/DM=1, значит AD=DM=1.
28√2 см²
Объяснение:
Рассмотрим треугольник ∆АВК
угол <ВАК=45°
угол <АКВ=90° так как ВК высота.
Сумма углов в треугольнике равна 180°
Найдем угол <АВК
<АВК=180°-<ВАК-<АКВ=180°-90°-45°=45°
<ABK=<BAK.
В равнобедренном треугольнике углы при основании равны
Раз <АВК=<ВАК, значит ∆АВК равнобедренный АК=КВ
КВ=4.
∆АВК- прямоугольный.
АВ- гипотенуза
АК и КВ - катеты.
По теореме Пифагора найдем гипотенузу.
АВ²=АК²+ВК²
АВ²=4²+4²=16+16=32см
АВ=√32=4√2 см
АВСD параллелограм, по свойствам параллелограма.
АВ=СD
CD=4√2 см.
SABCD=CD*BH=4√2*7=28√2 см² площадь параллелограма.
Треугольник DMC - равнобедренный, тогда углы MDC и MCD равны, но СD - биссектриса, значит углы ВСD и DCM также равны, т.е. углы MDC и BCD равны, значит медиана DM параллельна стороне ВС, т.к. равны накрест лежащие углы при секущей DС, тогда углы ADM и АВС равны как соответственные углы при параллельных прямых, тогда треугольники ADM и АВС подобны по 2 углам, значит AD/DM=AB/BC, но АВ=ВС, т.к. исходный треугольник равнобедренный, т.е. AD/DM=1, значит AD=DM=1.
Интересная задачка напряг извилины.