7. В равностороннем треугольнике ABC биссектрисы CN и AM пересекаются в точке P. Найдите угол МPN.
8. На стороне треугольника отмечены точки и так, что Докажите, что если , то .
9. На биссектрисе BD равнобедренного треугольника АВС с основанием АС отмечена точка О, на отрезке AD - точка М и на отрезке СD - точка К, причем DM = DK. Найдите угол MOD, если угол СКО равен 110°
нижнее основание ad = 33верхнее bc = 15точка пересечения диагоналей ообозначим угол oad = x, с учётом свойст биссектрисы и накрест лежащих углов этому же иксу равны и оав, и овс, и всо.треугольник авс равнобедренный ав = всопускаем высоту вк на adbk^2 = ab^2 - ak^2 = 15^2 - ((33-15/2)^2 = 12^2s = 12 * (15+33)/2 = 2882) сумма длин радиусов вписанной и описанной окружности r + r = 7 sqrt(3)/2обозначим сторону буквой амедиана (высота, биссектриса) равна a sqrt(3)/2две трети медианы - радиус описанной окружностиодна треть - радиус вписанной (эти два утверждения справедливы только для правильного треугльника)сумма радиусов нам данаa sqrt(3)/2 = 7 sqrt(3)/2a = 7периметр 21s = 7 * 7 sqrt(3)/4 = 21 sqrt(3)/4
1. Проведем прямую через центр О окружности и данную точку М на окружности.
2. Из точки М на прямой ОМ восстановим перпендикуляр к прямой ОМ.
Для этого из точки М как из центра проводим дугу радиусом ОМ и в точке пересечения прямой и этой дуги ставим точку N. Из точек О и N радиусом ОN проводим две дуги и точки их пересечения обозначим
А и В. Соединим точки пересечения прямой АВ, которая пройдет через точку М, так как ОМ=MN. эта прямая и есть искомая касательная к окружности в точке М, так как <OMA=<OMB=90° по построению, а касательная перпендикулярна радиусу в точке касания.