Расстоянием от точки до прямой является длина перпендикуляра, проведенного из точки к прямой. KD - расстояние от точки К до прямых AD и DC и оно равно 12 см.
AD⊥AB как стороны прямоугольника, AD - проекция KА на плоскость прямоугольника, значит KА⊥АВ по теореме о трех перпендикулярах. KА - расстояние от точки К до стороны АВ.
DC⊥BC как стороны прямоугольника, DС - проекция КС на плоскость АВС, значит КС⊥ВС по теореме о трех перпендикулярах. КС - расстояние от точки К до стороны ВС.
AD = BC = 20 см АВ = CD = Sabcd / AD = 180 / 20 = 9 см
ΔADK: по теореме Пифагора АК = √(DA² + DK²) = √(400+ 144) = √544 = 4√34 см
ΔCDK: по теореме Пифагора CK = √(DK² + DC²) = √(144 + 81) = √225 = 15 см
ответ: d(K ; AB) = AK = 4√34 см d(K ; BC) = KC = 15 см d(K ; CD) = KD = 12 см d(K ; AD) = KD = 12 см
Пусть боковая сторона треугольника AB=BC=c, тогда AC =2c cos 40° (для упрощения писанины обозначение градуса буду опускать),
При этом
Мы воспользовались известными (как мне кажется) в школе формулами для длины биссектрисы через прилежащие стороны и угол, а также для длины отрезка стороны, на которую опущена биссектриса.
Возможно, приведет к успеху и другой путь - в этой задаче возникают углы в 60 (угол ADB) и 120 (соответственно угол ADC) градусов, поэтому можно написать хорошие тождества, скрепляющие элементы чертежа. При этом полезно провести биссектрису DF=BD угла ADC и достроить до ромба. Правда, с первого захода довести до ответе этот путь не удалось.
KD - расстояние от точки К до прямых AD и DC и оно равно 12 см.
AD⊥AB как стороны прямоугольника,
AD - проекция KА на плоскость прямоугольника, значит
KА⊥АВ по теореме о трех перпендикулярах.
KА - расстояние от точки К до стороны АВ.
DC⊥BC как стороны прямоугольника,
DС - проекция КС на плоскость АВС, значит
КС⊥ВС по теореме о трех перпендикулярах.
КС - расстояние от точки К до стороны ВС.
AD = BC = 20 см
АВ = CD = Sabcd / AD = 180 / 20 = 9 см
ΔADK: по теореме Пифагора
АК = √(DA² + DK²) = √(400+ 144) = √544 = 4√34 см
ΔCDK: по теореме Пифагора
CK = √(DK² + DC²) = √(144 + 81) = √225 = 15 см
ответ:
d(K ; AB) = AK = 4√34 см
d(K ; BC) = KC = 15 см
d(K ; CD) = KD = 12 см
d(K ; AD) = KD = 12 см
Добавлю "дурацкое алгебраическое" решение.
Пусть боковая сторона треугольника AB=BC=c, тогда AC =2c cos 40° (для упрощения писанины обозначение градуса буду опускать),
При этом
Мы воспользовались известными (как мне кажется) в школе формулами для длины биссектрисы через прилежащие стороны и угол, а также для длины отрезка стороны, на которую опущена биссектриса.
Возможно, приведет к успеху и другой путь - в этой задаче возникают углы в 60 (угол ADB) и 120 (соответственно угол ADC) градусов, поэтому можно написать хорошие тождества, скрепляющие элементы чертежа. При этом полезно провести биссектрису DF=BD угла ADC и достроить до ромба. Правда, с первого захода довести до ответе этот путь не удалось.