Пусть ∠NKL = ∠MKP = φ - π/2 = α; неизвестная площадь NKM = s; a - s = KL*KN*sin(α)/2; b - s = KM*KP*sin(α)/2; если это перемножить, то (a - s)*(b - s) = KL*KN*KM*KP*(sin(α))^2/4 = a*b*(sin(α))^2; (a - s)*(b - s) = a*b*(sin(α))^2; осталось решить квадратное уравнение s^2 - (a + b)*s + a*b*(cos(α))^2 = 0; s = (a + b)/2 +- √((a + b)^2 - a*b*(cos(α))^2); s = (a + b)/2 +- √(a^2 + b^2)/2 + a*b*(sin(α))^2); Осталось понять, какой оставить знак. s = (a + b)/2 - √(a^2 + b^2)/2 + a*b*(cos(φ))^2);
я нашел частный случай, очень легкий, и по нему можно понять, что остается именно "минус". Пусть α = π/6; и сам треугольник KLM имеет угол L = π/6; оба треугольника получаются одинаковые, и их пересечение имеет площадь a/2, то есть s = (a + b)/4
по теореме косинусов a²=b²+c²-2bccosA cosA=(b²+c²-a²)/2bc=804/924=67/77
sin²A=1-cos²A=1440/77²=36*40/77² sinA=4*√40/77
b²=a²+c²-2accosB cosB=(a²+c²-b²)/2ac=164/484=41/121 cosB=cos2*(B/2)
=cos²B/2-sin²B/2=1-2sin²(B/2) sin²B/2=(1-cosB)/2=40/121 sin(B/2)=√40/11
по теореме синусов:
BD/sinA=c/sinα=AD/sin(B/2)
BD/sinC=a/sin(180-α)=DC/sinB/2
берем вторые равенства и складываем sin(180-α)=sinα
(с+a)/sinα=(AD+DC)/sin(B/2)=b/sin(B/2)
sinα=(c+a)*sin(B/2)/b=33*√40/11*21=√40/7
по теореме синусов
с/sinα=BD/sinA
BD=c*sinA/sinα=22*4*√40*7/(77*√40)=8
неизвестная площадь NKM = s;
a - s = KL*KN*sin(α)/2;
b - s = KM*KP*sin(α)/2;
если это перемножить, то
(a - s)*(b - s) = KL*KN*KM*KP*(sin(α))^2/4 = a*b*(sin(α))^2;
(a - s)*(b - s) = a*b*(sin(α))^2;
осталось решить квадратное уравнение
s^2 - (a + b)*s + a*b*(cos(α))^2 = 0;
s = (a + b)/2 +- √((a + b)^2 - a*b*(cos(α))^2);
s = (a + b)/2 +- √(a^2 + b^2)/2 + a*b*(sin(α))^2);
Осталось понять, какой оставить знак.
s = (a + b)/2 - √(a^2 + b^2)/2 + a*b*(cos(φ))^2);
я нашел частный случай, очень легкий, и по нему можно понять, что остается именно "минус". Пусть α = π/6; и сам треугольник KLM имеет угол L = π/6; оба треугольника получаются одинаковые, и их пересечение имеет площадь a/2, то есть s = (a + b)/4