Допустим, у нас есть плоскость. Всякая прямая, не перпендикулярная этой плоскости и пересекающая её (под острым углом) , является наклонной. Если на наклонной взять любую точку и провести через ней прямую, перпендикулярную данной плоскости, то проведённая прямая будет перпендикуляром. Если через точку пересечения наклонной и плоскости и точку пересечения перпендикуляра и плоскости провести прямую, эта прямая будет проекцией наклонной на плоскость. Проекция наклонной не зависит от того, какая точка взята на наклонной, чтобы провести через неё перпендикуляр, это можно легко доказать. Важно: проекция наклонной целиком лежит в данной плоскости, потому что две её точки в ней лежат.
Если на наклонной взять любую точку и провести через ней прямую, перпендикулярную данной плоскости, то проведённая прямая будет перпендикуляром.
Если через точку пересечения наклонной и плоскости и точку пересечения перпендикуляра и плоскости провести прямую, эта прямая будет проекцией наклонной на плоскость.
Проекция наклонной не зависит от того, какая точка взята на наклонной, чтобы провести через неё перпендикуляр, это можно легко доказать.
Важно: проекция наклонной целиком лежит в данной плоскости, потому что две её точки в ней лежат.
Расстояние от точки до прямой равно длине перпендикуляра, проведенного из этой точки к данной прямой.
Проведем МН⊥АD.
ВН - проекция наклонной МН и по т. о 3-х перпендикулярах
∠ ВНА=∠BHD=90°
∆ АНВ- прямоугольный с гипотенузой АВ=5 и острым углом А=45°. Сумма острых углов прямоугольного треугольника равна 90°, поэтому угол АВН=45°,⇒
∆ АВН- равнобедренный и ВН=АВ•sin 45º=2,5√2
Угол МВН прямой по условию ( отрезок, перпендикулярный плоскости, перпендикулярен любой прямой, проходящей через его основание).
Из прямоугольного ∆ MВН по т.Пифагора
МН=√(ВН² +ВМ² )=√(12,5+100)=7,5√2 см - это искомое расстояние.