9. Рассматривается правильная треугольная пирамида SABC с основанием АВС, М- точка на ребре SA такая, что SM = 3AM
а) Изобразите на чертеже рассматриваемую пирамиду и данную точку М.
б) Постройте сечение куба плоскостью, проходящей через точку М и параллельно основанию АВС.
в) Боковое ребро наклонено к плоскости основания под углом 450, SM =a/. Выразите сторону АВ
через а.
г) Найти отношение площади боковой поверхности данной пирамиды и отсеченной пирамиды с вершиной S.
Продлим РА за точку А и СВ за точку В, точку пересечения назовём О.
∆РОС – прямоугольный с прямым углом Р.
Сумма острых углов прямоугольного треугольника равна 90°. Исходя из этого: угол РОС=90°–угол ОСР=90°–45°=45°.
Получим что угол РОС=угол ОСР, тогда ∆РОС – равнобедренный с основанием ОВ.
Тогда РО=РС=9,2 см.
Основания трапеции параллельны, тоесть АВ//РС.
Следовательно: угол ОВА=угол ОСР как соответственные при параллельных прямых АВ и РС и секущей ОС; тогда угол ОВА=45°.
Угол АОВ=45° (доказано ранее)
Получим что угол ОВА=угол АОВ.
Тогда ∆АОВ – равнобедренный с основанием ОВ. Следовательно АО=АВ=2,6 см.
РА=РО–АО=9,2–2,6=6,6 см.
ответ: 6,6 см.
Если два треугольника имеют равный угол, то площади этих треугольников относятся как произведения сторон, заключающих этот угол.
Дано: ΔАВС, ΔА₁В₁С₁, ∠А = ∠А₁.
Доказать: Sabc /Sa₁b₁c₁ = (AB · AC) / (A₁B₁ · A₁C₁) .
Доказательство:
Наложим треугольники так, чтобы угол А совместился с углом А₁, а стороны А₁В₁ и А₁С₁ лежали на лучах АВ и АС соответственно.
Проведем ВН - высоту ΔАВС. ВН является так же и высотой треугольника А₁ВС₁.
Площади треугольников, имеющих общую высоту, относятся как их основания (стороны, к которым проведена высота):
Sabc / Sa₁bc₁ = AC / A₁C₁ (1)
Проведем С₁Н₁ - высоту ΔА₁В₁С₁. С₁Н₁ является так же и высотой треугольника АВС₁, значит
Sabc₁ / Sa₁b₁c₁ = AB / A₁B₁ (2)
Перемножим равенства (1) и (2):
(Sabc / Sa₁bc₁) · (Sabc₁ / Sa₁b₁c₁) = (AC / A₁C₁) · (AB / A₁B₁)
Так как Sa₁bc₁ и Sabc₁ это площадь одного и того же треугольника, она сокращается и получаем:
Sabc / Sa₁b₁c₁ = (AB · AC) / (A₁B₁ · A₁C₁)