V=1/3*a²*h, где а - сторона квадрата, лежащего в основании пирамиды. V=1/3*144*8=384 cm³.
2)Чтобы найти площадь поверхности пирамиды, нужно сложить площадь основания с площадью боковой грани взятой 4 раза.
Чтобы вычислить площадь боковой грани нужно найти высоту треугольника, который и является боковой гранью пирамиды. Найдем эту высоту по теореме Пифагора, как гипотенузу прямоугольного треугольника: SH²=6²+8²=100, SH=10.
Площадь боковой грани S= 1/2*12*10=60.
Площадь основания S=а²=144
Площадь поверхности пирамиды S=144+60*4=144+240=384 cm²
АВСД - трапеция, АД-ВС=14 см, Р=86 см, ∠АВД=∠СВД, АВ=СД. В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД. АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14, 86=4АД-14, АД=25 см. ВМ - высота на сторону АД. В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см. В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см. ВС=АД-14=25-14=11 см. Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
V=384 cm³
S=384 cm²
Объяснение:
1)Найдем объем правильной четырехугольной пирамиды:
V=1/3*a²*h, где а - сторона квадрата, лежащего в основании пирамиды. V=1/3*144*8=384 cm³.
2)Чтобы найти площадь поверхности пирамиды, нужно сложить площадь основания с площадью боковой грани взятой 4 раза.
Чтобы вычислить площадь боковой грани нужно найти высоту треугольника, который и является боковой гранью пирамиды. Найдем эту высоту по теореме Пифагора, как гипотенузу прямоугольного треугольника: SH²=6²+8²=100, SH=10.
Площадь боковой грани S= 1/2*12*10=60.
Площадь основания S=а²=144
Площадь поверхности пирамиды S=144+60*4=144+240=384 cm²
В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД.
АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14,
86=4АД-14,
АД=25 см.
ВМ - высота на сторону АД.
В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см.
В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см.
ВС=АД-14=25-14=11 см.
Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.