Строим острый угол В. Из вершины угла проводим окружность радиусом равным катету, и отмечаем точку пересечения А. Так как треугольник — прямоугольный, то восстанавливаем перпендикуляр из точки А. Полученная точка пересечения С. Соединяем попарно вершины треугольника. Искомый треугольник построен.
1. 13
Объяснение:
1.
Проведём FH перпендикулярно DE следовательно треугольник FHE прямоугольный.Треугольник DCE прямоугольный следовательно треугольник FCE тоже прямоугольный.
EF- биссектриса следовательно угол 1 = углу 2.Следовательно FHE= FCE(по острому углу) следовательно FH=FC=13
ответ: 13
2.
Строим острый угол В. Из вершины угла проводим окружность радиусом равным катету, и отмечаем точку пересечения А. Так как треугольник — прямоугольный, то восстанавливаем перпендикуляр из точки А. Полученная точка пересечения С. Соединяем попарно вершины треугольника. Искомый треугольник построен.
(Рисунок в закрепе)
3.
Объяснение: S=a*h/2.
1)
S треуг.=32*7/2=112 см².
16*h/2=112.
h=2*112/16=14 см. высота проведенна на сторону ВС.
2)
S ромба=d₁*d₂/2. диагонали ромба х см и 6х см.
х*6х/2=75.
6х²=150.
х²=25.
х=5 см. одна диагональ . Вторая диагональ 5*6=30 см.
3)
S трапеции=(а+в)/2)*h.
((а+19)/2))*8=104.
а+19=26 . после сокращения.
а=26-19=7см верхнее основание.
4)
Опустим высоту из тупого угла в 150° на нижнее основание.
Угол в этом Δ равен 150-90=60°(верхний угол)
Нижний угол 180-90-60=30°.
Катет, лежащий против угла в 30 град , равен половине гипотенузы
h =10/2=5 см.
S трап.=((7+13)/2))*5=10*5=50см²