Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость. АВ1 - проекция диагонали DB1 призмы на боковую грань АА1В1В. Значит угол АВ1D = α. Тогда сторона основания призмы (квадрата) АD=DB1*Sinα=а*Sinα. Диагональ основания ВD=а*Sinα√2. Высота призмы ВВ1=√(а²-2а²*Sin²α) или h=а√(1-2Sin²α). Объем призмы равен Vп=So*h, или а³Sin²α√(1-2Sin²α). При а=4 и Sin30° объем призмы равен Vп=64*(1/4)*√2/2=8√2. Объем описанного цилиндра равен So*h, где So=πR². R=BD/2=а*Sinα*(√2/2). So=πа²*Sin²α*(1/2). Объем цилиндра равен Vц=πа³*Sin²α*(1/2)*√(1-2Sin²α). При а=4 и Sin30° объем призмы равен Vц=π64*(1/4)*(1/2)*(√2/2)=π*4√2. ответ: Vп=8√2. Vц=π*4√2.
Объяснение:
Сначала найдем стороны параллелограмма
( 5 + 6 ) * 2 = 22 части приходится на все четыре стороны параллелограмма
44 \ 22 = 2 см - приходится на одну часть
2 * 5 = 10 см - ширина параллелограмма
2 * 6 = 12 см - длина параллелограмма
cos A = АН \ АВ = АН : 10
Составляем пропорцию и решаем ее
3 : 5
АН : 10
АН = 3 * 10 \ 5 = 6 см
По теореме Пифагора находим высоту - ВН
ВН = √АВ² - АН² = √100 - 36 =√64 = 8 см
Для нахождения площади трапеции нам нужно знать длину обоих оснований
НD = 12 - 6 = 6 см длина нижнего основания трапеции
( ВС + НD) \ 2 * ВН = ( 12 + 6 ) \ 2 * 8 = 72 см² - площадь трапеции НВСD
Тогда сторона основания призмы (квадрата)
АD=DB1*Sinα=а*Sinα. Диагональ основания
ВD=а*Sinα√2. Высота призмы ВВ1=√(а²-2а²*Sin²α) или h=а√(1-2Sin²α).
Объем призмы равен Vп=So*h, или а³Sin²α√(1-2Sin²α).
При а=4 и Sin30° объем призмы равен
Vп=64*(1/4)*√2/2=8√2.
Объем описанного цилиндра равен So*h, где So=πR².
R=BD/2=а*Sinα*(√2/2). So=πа²*Sin²α*(1/2).
Объем цилиндра равен Vц=πа³*Sin²α*(1/2)*√(1-2Sin²α).
При а=4 и Sin30° объем призмы равен
Vц=π64*(1/4)*(1/2)*(√2/2)=π*4√2.
ответ: Vп=8√2. Vц=π*4√2.