Построим правильную треугольную призму АВСА1В1С1. Проведем диагональ боковой поверхности АВ1 Ребро (высота) данной призмы ВВ1=√(АВ1^2-AB^2)= √(10^2-6^2)= √(100-36)= √64=8 см. Площадь боковой поверхности призмы равна S(б)=P*h (где P – периметр основания призмы, h – высота призмы) Так как призма правильная то: P=3a (где а – сторона треугольника) Р=3*6=18 см S(б)=18*8=144 кв. см. Полная площадь призмы равна S=S(б)+2S(ос) (где S(ос) – площадь основания). Площадь правильного треугольника (площадь основания) находим по формуле S= (√3*a^2)/4 S= (√3*6^2)/4=(√3*36)/4=9√3 см S=144+2*9√3=144+18√3 см Можно так: S=144+2*15.59= (приблизительно) 175.18 см.
Основание перпендикуляра обозначим К. Оно лежит на пересечении биссектрисы угла А со стороной ВС, равной 40 см. Определяем длину биссектрисы: Ва = (2/(в+с))√(вср(р-а)) = 33.9411 см. Проекции отрезков из точки S к сторонам треугольника - это перпендикуляры из точки К на эти стороны. Они равны, поэтому можно рассмотреть одну из них. В треугольнике АВК неизвестна сторона ВК - она определяется по свойству биссектрисы делить сторону: ВК = (АВ*АК)/(АВ+АК) = 16см. Высота КМ на сторону АВ = 15.8745 см по формуле: ha = (2√(p(p-a)(p-b)(p-c)))/a . Расстояние от заданной точки S до сторон АВ и АС равно: √( 15.8745²+18²) = 24 см.
Ребро (высота) данной призмы ВВ1=√(АВ1^2-AB^2)= √(10^2-6^2)= √(100-36)= √64=8 см.
Площадь боковой поверхности призмы равна S(б)=P*h (где P – периметр основания призмы, h – высота призмы)
Так как призма правильная то:
P=3a (где а – сторона треугольника)
Р=3*6=18 см
S(б)=18*8=144 кв. см.
Полная площадь призмы равна S=S(б)+2S(ос) (где S(ос) – площадь основания). Площадь правильного треугольника (площадь основания) находим по формуле S= (√3*a^2)/4
S= (√3*6^2)/4=(√3*36)/4=9√3 см
S=144+2*9√3=144+18√3 см
Можно так: S=144+2*15.59= (приблизительно) 175.18 см.
Определяем длину биссектрисы:
Ва = (2/(в+с))√(вср(р-а)) = 33.9411 см.
Проекции отрезков из точки S к сторонам треугольника - это перпендикуляры из точки К на эти стороны. Они равны, поэтому можно рассмотреть одну из них.
В треугольнике АВК неизвестна сторона ВК - она определяется по свойству биссектрисы делить сторону:
ВК = (АВ*АК)/(АВ+АК) = 16см.
Высота КМ на сторону АВ = 15.8745 см по формуле:
ha = (2√(p(p-a)(p-b)(p-c)))/a .
Расстояние от заданной точки S до сторон АВ и АС равно:
√( 15.8745²+18²) = 24 см.