Проведём из вершины угла ∠ADC высоту DE на основание ВС трапеции ABCD. По свойству прямоугольной трапеции она равна меньшей боковой стороне АВ.
Пусть основание AD = 2х, тогда основание ВС = 5х.
Рассмотрим четырёхугольник ABED. У него все углы прямые, значит, четырёхугольник ABED - прямоугольник.
Противоположные стороны прямоугольника равны. АD = ВЕ = 2х. Следовательно, отрезок основания ЕС = 5х-2х = 3х.
Рассмотрим прямоугольный ΔDEC.
По теореме Пифагора -
DE²+EC² = DC²
EC² = DC²-DE²
Подставим в формулу известные нам значения -
(3х)² = 17²-8²
9х² = 289-64
9х² = 225
х² = 25
х₁ = -5 - не удовлетворяет условию.
х₂ = 5 - подходит.
Площадь трапеции равна полусумме её оснований и высоты.
Полусумма оснований = 0,5*(2х+5х) = 0,5*(2*5+5*5) = 0,5*(10+25) = 17,5.
Высота = 8.
Площадь трапеции = 17,5*8 = 140 (ед²).
ответ: 140 (ед²).
ответ: 30°.
Объяснение:
ΔОСВ: ОС=ОВ как радиусы одной окружности ⇒
ΔОСВ - равнобедренный, значит ∠ОВС=∠ОСВ=60° по свойству углов при основании равнобедренного треугольника.
Из теоремы о сумме углов треугольника:
∠СОВ=180°-(∠ОВС+∠ОСВ)=180°-(60°+60°)=60°.
ΔАОВ: АО=ВО как радиусы одной окружности ⇒
ΔАОВ - равнобедренный.
ОD- медиана ΔАОВ, т.к. АD=DВ по условию ⇒ ОD - биссектриса ⇒
∠ АОD=∠ВОD=60°, ∠ АОВ=∠АОD+∠ВОD=60°+60°=120°.
∠ ОАВ=∠ ОВА по свойству углов при основании равнобедренного треугольника.
∠ ОАВ=(180°-120°):2=60°:2=30°.
Проведём из вершины угла ∠ADC высоту DE на основание ВС трапеции ABCD. По свойству прямоугольной трапеции она равна меньшей боковой стороне АВ.
Пусть основание AD = 2х, тогда основание ВС = 5х.
Рассмотрим четырёхугольник ABED. У него все углы прямые, значит, четырёхугольник ABED - прямоугольник.
Противоположные стороны прямоугольника равны. АD = ВЕ = 2х. Следовательно, отрезок основания ЕС = 5х-2х = 3х.
Рассмотрим прямоугольный ΔDEC.
По теореме Пифагора -
DE²+EC² = DC²
EC² = DC²-DE²
Подставим в формулу известные нам значения -
(3х)² = 17²-8²
9х² = 289-64
9х² = 225
х² = 25
х₁ = -5 - не удовлетворяет условию.
х₂ = 5 - подходит.
Площадь трапеции равна полусумме её оснований и высоты.
Полусумма оснований = 0,5*(2х+5х) = 0,5*(2*5+5*5) = 0,5*(10+25) = 17,5.
Высота = 8.
Площадь трапеции = 17,5*8 = 140 (ед²).
ответ: 140 (ед²).
ответ: 30°.
Объяснение:
ΔОСВ: ОС=ОВ как радиусы одной окружности ⇒
ΔОСВ - равнобедренный, значит ∠ОВС=∠ОСВ=60° по свойству углов при основании равнобедренного треугольника.
Из теоремы о сумме углов треугольника:
∠СОВ=180°-(∠ОВС+∠ОСВ)=180°-(60°+60°)=60°.
ΔАОВ: АО=ВО как радиусы одной окружности ⇒
ΔАОВ - равнобедренный.
ОD- медиана ΔАОВ, т.к. АD=DВ по условию ⇒ ОD - биссектриса ⇒
∠ АОD=∠ВОD=60°, ∠ АОВ=∠АОD+∠ВОD=60°+60°=120°.
∠ ОАВ=∠ ОВА по свойству углов при основании равнобедренного треугольника.
Из теоремы о сумме углов треугольника:
∠ ОАВ=(180°-120°):2=60°:2=30°.