Задача не требует рисунка, т.к. проверяются только формулы.
1. Если высота ромба х см, то сторона ромба, лежащего в основании, равна х+0.5х=1.5х.
2. Сумма стороны и высоты 1.5х+х=7.5, откуда х=7.5/2.5=3/см/, высота 3см, сторона ромба 1.5*3=4.5/см/
3. Площадь полной поверхности состоит из двух площадей оснований ромба и площади боковой поверхности, равной произведению периметра основания на высоту. т.е. 2S₁+S₂=S; где S - площадь полной поверхности, - S₁-площадь основания, S₂ -площадь боковой поверхности.
S₁=4.5*3=13.5/см²/; 2S₁=27/см²/;S=107 см²;
4. S₂=(S-2S₁)=107-27=80/см²/, тогда высота параллелепипеда равна 80/(4.5*4)=40/9
5. Объем равен произведению площади основания на высоту параллелепипеда, т.е. 13.5*40/9=60/см³/
1. Рассмотрим ΔАВС (см. рис. 1). Он равнобедренный с АВ=ВС=1 и ∠В=120° (как внутренний угол правильного шестиугольника). Опустим высоту ВО на АС. Получили два равных прямоугольных ΔАВО = ΔСВО с углами 60°, 30° и 90° (т.к. ВО в равнобедренном тр-ке есть биссектрисой).
По теореме Пифагора,
тогда АС=АО*2=
Рассмотрим ΔACC₁ (см. рис. 3). Он прямоугольный с двумя известными катетами
АС=√3, CC₁=1. Гипотенуза АС₁ является искомой величиной.
По теореме Пифагора:
2. Рассмотрим ΔACD. Он прямоугольный с двумя известными катетами
АС=√3, CD=1 (см. рис. 2). Найдем гипотенузу АD.
Рассмотрим ΔADD₁ (см. рис. 4). Он прямоугольный с двумя известными катетами
АD=2, DD₁=1. Гипотенуза АD₁ является искомой величиной.
Задача не требует рисунка, т.к. проверяются только формулы.
1. Если высота ромба х см, то сторона ромба, лежащего в основании, равна х+0.5х=1.5х.
2. Сумма стороны и высоты 1.5х+х=7.5, откуда х=7.5/2.5=3/см/, высота 3см, сторона ромба 1.5*3=4.5/см/
3. Площадь полной поверхности состоит из двух площадей оснований ромба и площади боковой поверхности, равной произведению периметра основания на высоту. т.е. 2S₁+S₂=S; где S - площадь полной поверхности, - S₁-площадь основания, S₂ -площадь боковой поверхности.
S₁=4.5*3=13.5/см²/; 2S₁=27/см²/;S=107 см²;
4. S₂=(S-2S₁)=107-27=80/см²/, тогда высота параллелепипеда равна 80/(4.5*4)=40/9
5. Объем равен произведению площади основания на высоту параллелепипеда, т.е. 13.5*40/9=60/см³/
AC₁=2
AD₁=√5
Объяснение:
1. Рассмотрим ΔАВС (см. рис. 1). Он равнобедренный с АВ=ВС=1 и ∠В=120° (как внутренний угол правильного шестиугольника). Опустим высоту ВО на АС. Получили два равных прямоугольных ΔАВО = ΔСВО с углами 60°, 30° и 90° (т.к. ВО в равнобедренном тр-ке есть биссектрисой).
По теореме Пифагора,
тогда АС=АО*2=
Рассмотрим ΔACC₁ (см. рис. 3). Он прямоугольный с двумя известными катетами
АС=√3, CC₁=1. Гипотенуза АС₁ является искомой величиной.
По теореме Пифагора:
2. Рассмотрим ΔACD. Он прямоугольный с двумя известными катетами
АС=√3, CD=1 (см. рис. 2). Найдем гипотенузу АD.
Рассмотрим ΔADD₁ (см. рис. 4). Он прямоугольный с двумя известными катетами
АD=2, DD₁=1. Гипотенуза АD₁ является искомой величиной.
По теореме Пифагора: