А) Как вы думаете, почему сформировался именно «звериный стиль»? Б) Как вы считаете, почему саков считали искусными воинами? В) И почему персам было сложно воевать с саками? Г) Куда исчезли саки?
Проведем МА⊥α и МВ⊥β. МА = 12 - расстояние от М до α, МВ = 16 - расстояние от М до β.
Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С. МА⊥α, а⊂α, значит МА⊥а. МВ⊥β, а⊂β, значит МВ⊥а. Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒ а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла; а⊥МС, ⇒ МС - искомое расстояние.
МА = 12 - расстояние от М до α,
МВ = 16 - расстояние от М до β.
Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С.
МА⊥α, а⊂α, значит МА⊥а.
МВ⊥β, а⊂β, значит МВ⊥а.
Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒
а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла;
а⊥МС, ⇒ МС - искомое расстояние.
МАСВ - прямоугольник, АС = МВ = 16.
Из прямоугольного треугольника АМС по теореме Пифагора:
МС = √(МА² + АС²) = √(16² + 12²) = √(256 + 144) = √400 = 20
У треугольников ABC и DEC стороны общего угла пропорциональны.
CE = CB*cos(C); CD = CA*cos(C);
поэтому эти треугольники подобны, и AB = ED/cos(C);
Поскольку ∠HEC = ∠HDC = 90°; то окружность, построенная на CH, как на диаметре, пройдет через точки D и E.
Поэтому CH - диаметр окружности, описанной вокруг треугольника DEC, и по теореме синусов ED = CH*sin(C);
Отсюда sin(C) = 12/13; => cos(C) = 5/13;
AB = 60*13/5 = 156;
Можно получить такую "обратную теорему Пифагора"
(1/ED)^2 = (1/AB)^2 + (1/CH)^2; :)
это соотношение решает задачку в общем виде, если в условии не скрыта Пифагорова тройка (как тут - 5,12,13)