Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Если внешний угол при вершине А равен 135 градусов, то внутренний угол А равен 180°-135° = 45°. Для определения стороны АС воспользуемся теоремой синусов. Сначала найдём угол С. sin C = (4*sin 45°)/6√2 = (4*1)/(√2*6√2) = 4/12 = 1/3. Угол С = arc sin(1/3) = 0,339837 радиан = 19,47122°. Находим угол В = 180°-45°-19,47122° = 115,5288°.
Сторону АС можно определить двумя 1) - по теореме синусов, 2) - по теореме косинусов.
Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.
Для определения стороны АС воспользуемся теоремой синусов.
Сначала найдём угол С.
sin C = (4*sin 45°)/6√2 = (4*1)/(√2*6√2) = 4/12 = 1/3.
Угол С = arc sin(1/3) = 0,339837 радиан = 19,47122°.
Находим угол В = 180°-45°-19,47122° = 115,5288°.
Сторону АС можно определить двумя
1) - по теореме синусов,
2) - по теореме косинусов.
1) АC = (sinB*6√2)/sin45° = ( 0,902369*6√2)/(1/√2) = 12* 0,902369 =
= 10,82843.
2) AC = √(4²+(6√2)²-2*4*6√2*cosB) = √(16+72-48√2*( -0,43096)) =
= √(88+29,2548) = √117,2548 = 10,82843.