A x - 3 y = 7 (это в общем, типо стрелка впереди два уравнения захватывает) 5 x + b y = 26 Известно, что пара чисел ( 10 ; 5 ) является ее решением. Задать значения коэффициентов а и b A = B = Умоляю решите
Итак, будем доказывать тот факт, что треугольники равны. Пусть будет так, что A1B2C2- треугольник, равный треугольнику ABC, с вершиной B2 на луче A1B1 и вершиной C2 в той же полуплоскости как бы относительно прямой A1B1, где будет у нас находиться вершина C1.
Так как A1B2=A1B1, то вершина B2 совпадает с вершиной B1, это очевидно. Так как угол B1A1C2= углу B1A1C1 и тогда угол A1B1C2 = углу A1B1C1, то луч A1C2 будет совпадать с лучом A1C1, а луч B1C2 совпадает с лучом B1C1. Отсюда следует, что вершина C2 совпадает с вершиной C1...
Итак, треугольник A1B1C1 совпадает с треугольником A1B2C2, а как раз и значит,что он равен треугольнику ABC.
Теорема доказана. Вот в прикреплённом файле есть мои чертежи по доказательству:
180-120=60 - сумма оставшихся углов Т.к. тр. равнобедренный углы при основании равны, следовательно каждый угол 60\2=30 Высота проведённая в равнобедренном тр. является и медианой и биссектрисой, следовательно делит основание пополам. Рассмотрим образовавшийся прямоуг. тр.: По 2 свойству прямоуг. тр.: против угла в 30 градусов лежит катет равный половине гипотинузы. Тогда пусть катет лежащий против угла в 30 градусов будет A, тогда гипотинуза будет 2A. По т. Пифагора (2A)²=A²+2² A=√4/3 ответ: √4/3 P.s: Хм не целое, есть ответ?
Итак, будем доказывать тот факт, что треугольники равны.
Пусть будет так, что A1B2C2- треугольник, равный треугольнику ABC, с вершиной B2 на луче A1B1 и вершиной C2 в той же полуплоскости как бы относительно прямой A1B1, где будет у нас находиться вершина C1.
Так как A1B2=A1B1, то вершина B2 совпадает с вершиной B1, это очевидно. Так как угол B1A1C2= углу B1A1C1 и тогда угол A1B1C2 = углу A1B1C1, то луч A1C2 будет совпадать с лучом A1C1, а луч B1C2 совпадает с лучом B1C1. Отсюда следует, что вершина C2 совпадает с вершиной C1...
Итак, треугольник A1B1C1 совпадает с треугольником A1B2C2, а как раз и значит,что он равен треугольнику ABC.
Теорема доказана.
Вот в прикреплённом файле есть мои чертежи по доказательству:
Т.к. тр. равнобедренный углы при основании равны, следовательно каждый угол 60\2=30
Высота проведённая в равнобедренном тр. является и медианой и биссектрисой,
следовательно делит основание пополам.
Рассмотрим образовавшийся прямоуг. тр.: По 2 свойству прямоуг. тр.: против угла в 30 градусов лежит катет равный половине гипотинузы. Тогда пусть катет лежащий против угла в 30 градусов будет A, тогда гипотинуза будет 2A.
По т. Пифагора (2A)²=A²+2²
A=√4/3
ответ: √4/3
P.s: Хм не целое, есть ответ?