Гегель использует термин Mittelasien для обозначения области, населённой монголами. Термин «Средняя Азия» зафиксирован в трудах историка С. М. Соловьёва, под которым понимается степной географический регион к юго-востоку от Русской равнины и востоку от Каспийского моря.
В древности в Средней Азии существовали довольно крупные государства. В VII—V вв. до н. э. в долине Зарафшана существовало государство Согдиана, в среднем течении Амударьи — Бактрия, в нижнем её течении — Хорезм, в долине Мургаба — Маргиана. Северная часть Средней Азии входила в состав Скифии, а южная часть находилась в сфере влияния Ирана.
Первые сведения о Средней Азии встречаются в трудах Геродота, Страбона, Арриана, Птолемея и других.
3. Рассмотрим прямоугольный треугольник CC1L. Угол CC1L равен углу B1BC, который в свою очередь равен 60° по условию. Следовательно, угол C1CL=30°. По теореме о катете напротив угла в 30° гипотенуза CC1=2⋅LC1=2⋅4=8.
Гегель использует термин Mittelasien для обозначения области, населённой монголами. Термин «Средняя Азия» зафиксирован в трудах историка С. М. Соловьёва, под которым понимается степной географический регион к юго-востоку от Русской равнины и востоку от Каспийского моря.
В древности в Средней Азии существовали довольно крупные государства. В VII—V вв. до н. э. в долине Зарафшана существовало государство Согдиана, в среднем течении Амударьи — Бактрия, в нижнем её течении — Хорезм, в долине Мургаба — Маргиана. Северная часть Средней Азии входила в состав Скифии, а южная часть находилась в сфере влияния Ирана.
Первые сведения о Средней Азии встречаются в трудах Геродота, Страбона, Арриана, Птолемея и других.
1. В основании – прямоугольник, поэтому треугольник ABD – прямоугольный. По теореме Пифагора находится его гипотенуза.
BD−→−=AB2+AD2−−−−−−−−−−√=62+82−−−−−−√=10
2. Достроим четырехугольник KPRM, где P и R – середины BB1 и DD1 соответственно.
По признаку параллелограмма все четыре получившихся четырехугольника ABPK,BCMP,CMRD и AKRD – параллелограммы.
Следовательно, KPRM – тоже параллелограмм, причем равный основаниям параллелепипеда. А значит, и прямоугольник.
Диагонали прямоугольника KM=PR=BD= равны. Следовательно, KM−→−=10
3. Рассмотрим прямоугольный треугольник CC1L. Угол CC1L равен углу B1BC, который в свою очередь равен 60° по условию. Следовательно, угол C1CL=30°. По теореме о катете напротив угла в 30° гипотенуза CC1=2⋅LC1=2⋅4=8.
И CC1−→−=8
4. Рассмотрим треугольник B1CC1.
Его уголCC1B1=60° , его стороны CC1 и B1C1
Объяснение: