AB и AC касательные к окружности, B и C точки касания, угол BAC =64°.точки B и C разбивают окружность на две дуги. найдите градусную меру большей из них
1. Дано: угол 2 = угол 1 + 34°; Найти: угол 3. Решение: Угол 3 и угол 1 - соотвественные углы при параллельных прямых a и b и секущей c. Следовательно, угол 3 = углу 1. Углы 1 и 2 - односторонние при параллельных прямых a и b и секущей c⇒ угол 1 + угол 2 = 180°. Но, по условию, угол 2 = угол 1 + 34°. Подставим это выражение: угол 1 + угол 1 + 34° = 180°. Отсюда угол 1 = 73°. Значит, угол 3 = 73°. ответ: 73°.
2. Дано: ΔАВС, угол С = 90°, CD || AB, угол DCB = 37°. Найти: угол А, угол В. Рисунок к задаче - в приложении к ответу. Решение: Угол DCB и угол B - накрест лежащие углы при параллельных прямых AB и DC и секущей BC ⇒ угол DCB = углу B. Т.к. угол DCB = 37°, то угол B = 37°. Угол A + угол В + угол ACB = 180° (по теореме о сумме углов треугольника), следовательно, угол A = 180° - угол В - угол ACB. Угол А = 180° - 90° - 37° = 53°. ответ: угол А = 53°, угол В = 37°.
Найти: угол 3.
Решение:
Угол 3 и угол 1 - соотвественные углы при параллельных прямых a и b и секущей c. Следовательно, угол 3 = углу 1.
Углы 1 и 2 - односторонние при параллельных прямых a и b и секущей c⇒ угол 1 + угол 2 = 180°. Но, по условию, угол 2 = угол 1 + 34°. Подставим это выражение:
угол 1 + угол 1 + 34° = 180°.
Отсюда угол 1 = 73°.
Значит, угол 3 = 73°.
ответ: 73°.
2. Дано: ΔАВС, угол С = 90°, CD || AB, угол DCB = 37°.
Найти: угол А, угол В.
Рисунок к задаче - в приложении к ответу.
Решение:
Угол DCB и угол B - накрест лежащие углы при параллельных прямых AB и DC и секущей BC ⇒ угол DCB = углу B.
Т.к. угол DCB = 37°, то угол B = 37°.
Угол A + угол В + угол ACB = 180° (по теореме о сумме углов треугольника), следовательно, угол A = 180° - угол В - угол ACB.
Угол А = 180° - 90° - 37° = 53°.
ответ: угол А = 53°, угол В = 37°.
И нахождение острых углов трапеции равносильно нахождению углов при основании синего треугольника
По теореме косинусов для угла Д
35² = 28²+42²-2*28*42*cos∠Д
2*28*42*cos∠Д = 28²+42²-35² = 1323
cos∠Д = 3³*7²/(2*4*7*2*3*7) = 3²/16 = 9/16
∠А = ∠Д = arccos(9/16) ≈ 55,77°
∠Б = 180-∠А = 180-arccos(9/16) ≈ 34,23°
По теореме косинусов для угла Г
28² = 35²+42²-2*35*42*cos∠Г
2*35*42*cos∠Г = 35²+42²-28² = 2205
cos∠Г = 3²*5*7²/(2*5*7*2*3*7) = 3/4
∠Г = arccos(3/4) ≈ 41,41°
∠В = 180-∠Г = 180-arccos(3/4) ≈ 138,59°