AB - основание прямоугольного треугольника ABC с прямым ∠B принадлежит плоскости α. Чему равно расстояние от вершины C до плоскости α, если AC = 17, AB = 15 и угол между двумя плоскостями = 45°.
Обьём правильного тетраэдра равен 18√2 см³. Найдите площадь основания тетраэдра. V - обьём правильного тетраэдра а - рёбра правильного тетраэдра (сторона правильного треугольника) S - площадь основания правильного тетраэдра V = 18√2 см³ решение: в основании правильного тетраэдра лежит равносторонний треугольник площадь равностороннего треугольника: S = (a²•√3)/4 обьём правильного тетраэдра: V = (а³•√2)/12 18√2 = (а³•√2)/12 18 = а³/12 а³ = 18•12 = 216 а = ∛ 216 = 6 S = (a²•√3)/4 = S = (6²•√3)/4 = 9•√3 ответ: площадь основания тетраэдра = 9•√3 см²
Рассмотрим тр-к АДС. Он равнобедренный, так как угол С равен 45 градусам, а угол Д равен 90 градусам. Тогда АД равно ДС равно 8 см. Площадь треугольника АВС равна АД умноженное на ВС и делённое на 2. ВС равно сумме ВД и СД ,т.е. ВС равно 14 см. Площадь треугольника АВС равна 56 см в квадрате.Также площадь тр-ка АВС равнв СЕ ( высота, проведенная к стороне АВ) умноженное на АВ (10 см) и деленное на 2. Отсюда СЕ равно площадь тр-ка АВС (56 см в кв) умножить на 2 и разделить на 10. Это равно 11,2 см. СЕ=11,2 см.
V - обьём правильного тетраэдра
а - рёбра правильного тетраэдра (сторона правильного треугольника)
S - площадь основания правильного тетраэдра
V = 18√2 см³
решение:
в основании правильного тетраэдра лежит равносторонний треугольник
площадь равностороннего треугольника:
S = (a²•√3)/4
обьём правильного тетраэдра:
V = (а³•√2)/12
18√2 = (а³•√2)/12
18 = а³/12
а³ = 18•12 = 216
а = ∛ 216 = 6
S = (a²•√3)/4 = S = (6²•√3)/4 = 9•√3
ответ: площадь основания тетраэдра = 9•√3 см²
ВС равно сумме ВД и СД ,т.е. ВС равно 14 см. Площадь треугольника АВС равна 56 см в квадрате.Также площадь тр-ка АВС равнв СЕ ( высота, проведенная к стороне АВ) умноженное на АВ (10 см) и деленное на 2. Отсюда СЕ равно площадь тр-ка АВС (56 см в кв) умножить на 2 и разделить на 10. Это равно 11,2 см. СЕ=11,2 см.