1) Опустим из А высоту АН. АН=АВ*sin 60º=2√3BH=AB*sin30º=2 HC=BC-BH=6-2=4 По т.Пифагора АС=√(АН²+НС²)= √(16+12)=2√7 Прямоугольные ∆ ВDС и ∆ АНС подобны по общему острому угу С. BC:AC=BD:AH 6:2√7=BD:2√3 BD=12√3:2√7=(6√3):√7 или (6√21):7
2) Найдем АС как в первом решении. Площадь треугольника АВС S=AC*BD:2 S=AH*BC:2 Т.к.площадь одной и той же фигуры, найденная любым одна и та же, приравняем полученные выражения: AC*BD:2=AH*BC:2 (2√7)*BD:2=(2√3)*6:2 BD=(12√3):(2√7)=(6√3):√7 или (6√21):7 -- АС можно найти и по т.косинусов, а площадь ∆ АВС по формуле S=a*b*sinα:2
Дано: шар с центром в точке R=13- радиус шара плоскость а -сечение шара р(а, О)=5 (расстояние от центра шара О до плоскости а Найти: r-радиус круга в сечении Решение Сечением будет круг. Найдем его радиус. От центра шара до центра сечения 5 - это катет треугольника, который получится, если соединим центр шара, центр сечения и точку пересечения шара с его сечением. 13 - гипотенуза, по теорПифагора:r=√13²-5²=√144=12. S=πr²=π144=144πкв.ед
HC=BC-BH=6-2=4
По т.Пифагора АС=√(АН²+НС²)= √(16+12)=2√7
Прямоугольные ∆ ВDС и ∆ АНС подобны по общему острому угу С. BC:AC=BD:AH
6:2√7=BD:2√3
BD=12√3:2√7=(6√3):√7 или (6√21):7
2) Найдем АС как в первом решении.
Площадь треугольника АВС
S=AC*BD:2
S=AH*BC:2
Т.к.площадь одной и той же фигуры, найденная любым одна и та же, приравняем полученные выражения:
AC*BD:2=AH*BC:2
(2√7)*BD:2=(2√3)*6:2
BD=(12√3):(2√7)=(6√3):√7 или (6√21):7
--
АС можно найти и по т.косинусов, а площадь ∆ АВС по формуле S=a*b*sinα:2
Дано: шар с центром в точке
R=13- радиус шара
плоскость а -сечение шара
р(а, О)=5 (расстояние от центра шара О до плоскости а
Найти: r-радиус круга в сечении
Решение
Сечением будет круг. Найдем его радиус. От центра шара до центра сечения 5 - это катет треугольника, который получится, если соединим центр шара, центр сечения и точку пересечения шара с его сечением. 13 - гипотенуза, по теорПифагора:r=√13²-5²=√144=12. S=πr²=π144=144πкв.ед