знак - у первого косинуса означает, что точка В проектируется на продолжение стороны АС за точку А. Пусть К - проекция В на продолжение АС. Пусть ВК = h; AK = x; тогда
угол ВАК = 180 - угол ВАС, то есть это острый угол, обозначим его Ф, и соs(Ф) = 4/5, откуда сразу находим sin(Ф) = 3/5, сtg(Ф) = 4/3; x = 4*h/3;
Для угла С все проще - cos(C) = 8/√73; откуда sin(C) = 3/√73; ctg(C) = 8/3;
И получается x + 4 = 8*h/3; Ну, это значит 4*h/3 = 4; h = 3; S = 3*4/2 = 6;
Некоторые спрашивают, как по синусу найти косинус... (sin(Ф))^2 + (cos(Ф))^2 = 1;
Так как треугольник равнобедренный,то его боковые стороны равны,мы не знаем какую они имеют длину,поэтому обозначим за Х,но мы знаем что каждая боковая сторона на 2 больше основания,следовательно основание у нас будет Х,а каждая боковая сторона Х + 2 Решение выглядит таким образом: Х + 2(Х + 2) = 10 Х + 2Х + 4 = 10 3Х + 4 = 10 3Х = 10 - 4 3Х = 6 Х = 6 : 3 Х = 2 Следовательно боковая сторона 2 + 2 = 4,вторая боковая сторона тоже 4,т.к. треугольник равнобедренный,а основание это просто Х а следовательно равно 2
знак - у первого косинуса означает, что точка В проектируется на продолжение стороны АС за точку А. Пусть К - проекция В на продолжение АС. Пусть ВК = h; AK = x; тогда
угол ВАК = 180 - угол ВАС, то есть это острый угол, обозначим его Ф, и соs(Ф) = 4/5, откуда сразу находим sin(Ф) = 3/5, сtg(Ф) = 4/3; x = 4*h/3;
Для угла С все проще - cos(C) = 8/√73; откуда sin(C) = 3/√73; ctg(C) = 8/3;
И получается x + 4 = 8*h/3; Ну, это значит 4*h/3 = 4; h = 3; S = 3*4/2 = 6;
Некоторые спрашивают, как по синусу найти косинус... (sin(Ф))^2 + (cos(Ф))^2 = 1;
Решение выглядит таким образом:
Х + 2(Х + 2) = 10
Х + 2Х + 4 = 10
3Х + 4 = 10
3Х = 10 - 4
3Х = 6
Х = 6 : 3
Х = 2
Следовательно боковая сторона 2 + 2 = 4,вторая боковая сторона тоже 4,т.к. треугольник равнобедренный,а основание это просто Х а следовательно равно 2