Так как сумма углов прилежащих к одной стороне равна 180 градусов, значит углы данные в задаче- противолежащие. Противолежащие углы у параллелограмма равны, следовательно:
A + C= 62 равно 2A=62
Пусть A=x, тогда
2x=62
x=31 градус = угол А и следовательно=уголу C (противолежащие углы парал. равны)
Сумма прилежащих к одной стороне углов равна 180 градусов, следовательно, угол B= 180-A=180-31=149 градусов
ответ: угол B=149 градусов
Задача 2:
Так как противолежащие углы параллелограмма равны, а сумма углов прилежащих к одной стороне равна 180, то можно составить уравнение
2,47м BG=54см, AH=64см. Учите геометрию (мастер ее в школе выучил)
Объяснение:
Поскольку AH, BG, CF, DЕ параллельны, то ABGH, BCFG, CDEF - трапеции. Раз EF=FG=GH, то и DC=BC=AB по теореме Фалеса. Кроме того, CF является средней линией трапеции BDEG, а BG - средней линией трапеции ACFH. Средняя линия трапеции равна полусумме оснований.
EF=FG=GH=10cm
AB=DC=CD=7cm
DE=34cm, CF=44cm Тогда BG=54cm (CF=(DE+BG)/2, BG=2CF-DE=2*44-34=54)
Объяснение:
Задача 1:
Так как сумма углов прилежащих к одной стороне равна 180 градусов, значит углы данные в задаче- противолежащие. Противолежащие углы у параллелограмма равны, следовательно:
A + C= 62 равно 2A=62
Пусть A=x, тогда
2x=62
x=31 градус = угол А и следовательно=уголу C (противолежащие углы парал. равны)
Сумма прилежащих к одной стороне углов равна 180 градусов, следовательно, угол B= 180-A=180-31=149 градусов
ответ: угол B=149 градусов
Задача 2:
Так как противолежащие углы параллелограмма равны, а сумма углов прилежащих к одной стороне равна 180, то можно составить уравнение
Пусть угол A - x. Тогда угол D=x+70
x+(x+70)=180
2x+70=180
2x=110
x= 55- градусов угол A
1) D=180 - A= 180-55=125 градусов
ответ: 125 градусов = угол D
2,47м BG=54см, AH=64см. Учите геометрию (мастер ее в школе выучил)
Объяснение:
Поскольку AH, BG, CF, DЕ параллельны, то ABGH, BCFG, CDEF - трапеции. Раз EF=FG=GH, то и DC=BC=AB по теореме Фалеса. Кроме того, CF является средней линией трапеции BDEG, а BG - средней линией трапеции ACFH. Средняя линия трапеции равна полусумме оснований.
EF=FG=GH=10cm
AB=DC=CD=7cm
DE=34cm, CF=44cm Тогда BG=54cm (CF=(DE+BG)/2, BG=2CF-DE=2*44-34=54)
2BG=CF+AH, AH=2BG-CF=2*54-44=64cm
AB+BC+CD+DE+EF+FG+GH+AH+BG+CF=7+7+7+34+10+10+10+64+44+54=247см=2,47м