. Доказательство того, что диагональ делит параллелограмм на два равных треугольника: Треугольники будут равны по трём сторонам - диагональ (общий элемент) и параллельные стороны (они равны).
2. Сама задача: 1. ВС=12+7= 19см. ВС=АД=19см. (т.к. противоположные стороны параллелограмма равны) 2. Треугольник АВЕ - равнобедренный с основанием АЕ. (т.к. накрест лежащие углы равны, а биссектриса делит угол на две равные части, то есть все углы, касающиеся биссектрисы, равны) АВ=ВЕ=12см. 3. Периметр параллелограмма: 2х(АВ+ВС)=2х(19+12)=62см.
Как известно, диагонали точкой пересечения делятся пополам, а противоаоложные стороны пар-мма равны. Следовательно, противоположные по отношению друг к другу треугольники равны(по 3-ему признаку равенства треугольников), и площади их тоже равны.
Осталось доказать, что площади двух "смежных" треугольников равны. Рассмотрим их. Одна сторона у них общая, примем за основание сторону, лежащую на диагонали. Эти стороны у треугольников равны, т.к. точкой пересечения, повторюсь, диагонали делятся пополам. Прощадь треугольника у нас равна половине основания, умноженного на высоту, проведенную к основанию. Проведи к основаниям треугольников высоту - это будет один и тот же отрезок.
Мы получили - основания у треугольников равны, высоты равны.
Треугольники будут равны по трём сторонам - диагональ (общий элемент) и параллельные стороны (они равны).
2. Сама задача:
1. ВС=12+7= 19см.
ВС=АД=19см. (т.к. противоположные стороны параллелограмма равны)
2. Треугольник АВЕ - равнобедренный с основанием АЕ. (т.к. накрест лежащие углы равны, а биссектриса делит угол на две равные части, то есть все углы, касающиеся биссектрисы, равны)
АВ=ВЕ=12см.
3. Периметр параллелограмма:
2х(АВ+ВС)=2х(19+12)=62см.
Как известно, диагонали точкой пересечения делятся пополам, а противоаоложные стороны пар-мма равны. Следовательно, противоположные по отношению друг к другу треугольники равны(по 3-ему признаку равенства треугольников), и площади их тоже равны.
Осталось доказать, что площади двух "смежных" треугольников равны. Рассмотрим их. Одна сторона у них общая, примем за основание сторону, лежащую на диагонали. Эти стороны у треугольников равны, т.к. точкой пересечения, повторюсь, диагонали делятся пополам. Прощадь треугольника у нас равна половине основания, умноженного на высоту, проведенную к основанию. Проведи к основаниям треугольников высоту - это будет один и тот же отрезок.
Мы получили - основания у треугольников равны, высоты равны.
Теорема доказана.