Из точки Е на ВС надо провести перпендикуляр. Пусть он пересекается с ВС в точке К. Тогда ВКЕ - равнобедренный прямоугольный треугольник, и его катеты ВК = ЕК = 3.
В прямоугольном треугольнике ЕКС катет ЕК = 3, гипотенуза ЕС = 5, то есть это "египетский" треугольник, его второй катет равен КС = 4.
Отсюда сторона квадрата ВС = 3 + 4 = 7, а площадь квадрата 7^2 = 49;
На самом деле, есть еще интересная возможность - если ЕD > BD. То есть точка E лежит на продолжении BD за точку B. В этом случае суть решения не меняется, но сторона квадрата ВС = 1, и площадь тоже 1.
Из точки Е на ВС надо провести перпендикуляр. Пусть он пересекается с ВС в точке К. Тогда ВКЕ - равнобедренный прямоугольный треугольник, и его катеты ВК = ЕК = 3.
В прямоугольном треугольнике ЕКС катет ЕК = 3, гипотенуза ЕС = 5, то есть это "египетский" треугольник, его второй катет равен КС = 4.
Отсюда сторона квадрата ВС = 3 + 4 = 7, а площадь квадрата 7^2 = 49;
На самом деле, есть еще интересная возможность - если ЕD > BD. То есть точка E лежит на продолжении BD за точку B. В этом случае суть решения не меняется, но сторона квадрата ВС = 1, и площадь тоже 1.
1)Рассмотрим треугольник ABD :
Угол "C"=90градусов(т.е. прямой)=>(следовательно) по т.Пифагора (в прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы)
Но AB=AD(т.к ABCD-квадрат);
||
\_/
=>=> =>=> AB=3
2)
AB=CB(т.к.AB=BC)
ответ:9