Поскольку ∆ прямоугольный, то второй, прилежащий к заданному катету угол, 90°. Пусть, например, задан катет 6см и прилежащий угол 40°. Проводим горизонтальную линию длиной 6 см, обозначаем А и В. Это катет. Прикладываем транспортир, совмещая (одновременно) его основание с линией катета, а его риску (крестик) нулевой точки - с точкой А. По шкале откладываем угол 40° от катета АВ, ставим точку (временную). Через неё и т.А проводим временную линию -вторую сторону заданного угла. В точке В катета по линейке строим перпендикуляр под углом 90° до пересечения с временной линией (если лист без клеток, то опять приладыааем транспортир). Обозначаем, например, т.С. Обводим посильнее гипотенузу АС и второй катет ВС. Можно проверить транспортиром угол АСВ, он должен получиться 180-90-40=50°, зависит от аккуратности построения.
Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
Проводим горизонтальную линию длиной 6 см, обозначаем А и В. Это катет. Прикладываем транспортир, совмещая (одновременно) его основание с линией катета, а его риску (крестик) нулевой точки - с точкой А. По шкале откладываем угол 40° от катета АВ, ставим точку (временную). Через неё и т.А проводим временную линию -вторую сторону заданного угла.
В точке В катета по линейке строим перпендикуляр под углом 90° до пересечения с временной линией (если лист без клеток, то опять приладыааем транспортир). Обозначаем, например, т.С. Обводим посильнее гипотенузу АС и второй катет ВС.
Можно проверить транспортиром угол АСВ, он должен получиться 180-90-40=50°, зависит от аккуратности построения.
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см