В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Rushana14
Rushana14
18.06.2022 23:30 •  Геометрия

Построение треугольника по трем элементам

Показать ответ
Ответ:
Настя49261
Настя49261
12.08.2022 11:39

Если в задаче дана окружность, вписанная в прямоугольный треугольник, то ее решение может быть связано со свойством отрезков касательных, проведенных из одной точки, и теоремой Пифагора.

Кроме того, следует учесть, что радиус вписанной в прямоугольный треугольник окружности вычисляется по формуле

  

где a и b — длины катетов, c — гипотенузы.

Рассмотрим две задачи на вписанную в прямоугольный треугольник окружность.

Задача 1.

Точка касания окружности, вписанной в прямоугольный треугольник, делит гипотенузу на отрезки 4 см и 6 см. Найти периметр и площадь треугольника и радиус окружности.

Дано: ∆ ABC, ∠C=90º,

окружность (O, r) — вписанная,

K, M, F — точки касания со сторонами AC, AB, BC,

BM=4 см, AM=6 см.

Найти:

  

1) По свойству отрезков касательных, проведенных из одной точки,

AK=AM=6 см,

BF=BM=4 см,

CK=CF=x см.

2) AB=AM+BM=6+4=10 см,

AC=AK+CK=(6+x) см,

BC=BF+CF=(4+x) см.

3) По теореме Пифагора:

  

  

  

  

  

По теореме Виета,

  

Второй корень не подходит по смыслу задачи. Значит, CK+CF=2 см, AC=8 см, BC=6 см.

4)

  

  

  

  

  

  

ответ: 24 см, 24 см², 2 см.

Задача 2.

Найти площадь прямоугольного треугольника, гипотенуза которого равна 26 см, а радиус вписанной окружности — 4 см.

Дано:∆ ABC, ∠C=90º,

окружность (O, r) — вписанная,

K, M, F — точки касания со сторонами AC, AB, BC,

AB=26 см, r=4 см.

Найти:

  

1) Проведем отрезки OK и OF.

  

(как радиусы, проведенные в точки касания).

Четырехугольник OKCF — прямоугольник (так как у него все углы — прямые).

А так как OK=OF (как радиусы), то OKCF — квадрат.

2) По свойству касательных, проведенных из одной точки,

AM=AK=x см,

BF=BM=(26-x) см,

CF=CK=r=4 см.

3) AC=AK+KC=(x+4) см, BC=BF+CF=26-x+4=(30-x) см.

По теореме Пифагора,

  

  

  

  

  

  

Если AM=20 см, то AC=24 см, BC=10 см.

Если AM=6 см, то AC=10 см, BC=24 см.

  

  

ответ: 120 см².

0,0(0 оценок)
Ответ:
catttttttttttttttttt
catttttttttttttttttt
30.09.2021 09:01

В ∆ АВС высоты АА1 и СС1 со сторонами  два прямоугольных треугольника АС1С и АА1С с общей гипотенузой АС.

Следовательно, вокруг них можно описать окружность с диаметром АС, на который опираются прямые углы АС1С и АА1С. 

Вписанные углы А1АС и А1С1С опираются на одну дугу А1С. Вписанные углы, опирающиеся на одну дуга, равны. ⇒ 

∠СС1А1=∠САА1. Доказано. 

---------

Рассмотрим ∆ АОС1 и А1ОС.

Эти треугольники подобны по двум углам - прямому при С1 и А1 и вертикальному при точке пересечения высот О. 

Из подобия следует пропорциональность сторон:

 С1О:А1О=АО:СО, 

откуда имеем пропорциональность тех же сторон в ∆ АОС и ∆ А1ОС1. 

Вертикальные углы при вершине О этих треугольников равны. 

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

Следовательно, углы СС1А1 и САА1 равны. Доказано. 


Востроугольном треугольнике abc проведены высоты аа1 и cc1 докажите, что углы сс1а1 и саа1 равны.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота