А) Соединим А с точкой МАМ - ортогональная проекция КМ, KM перпендикулярна BC, поэтому по теореме о трех перпендикулярах АМ перпендикулярна ВСРассмотрим треугольника АВМ и АМС: они прямоугольные, ВМ=МС, поэтому они равны по двум катетам. Отсюда следует, что АВ=АСб) прямая ВС перпендикулярна КМ и АМ - двум пересекающимся прямым плоскости АКМ,поэтому перпендикулярна и самой пл-ти. Плоскость (KBC) проходит через перпендикуляр к плоскости (КАМ) => (KBC) перпендикулярна пл-ти (KAM)в) Найти площадь ABC,если угол BKC=60 градусов, BC=6 см, KA= 3 корня из 2Рассмотрим треугольникb КВМ и КМС: они прямоугольные (KM перпендикулярна BC), ВМ=МС, поэтому они равны по двум катетам. Отcюда ВК=СК, а тогда с учетом угла в 60 градусов треугольник ВКС равносторонний и ВК=СК=6. ВМ=3Тогда легко найти КМИз треугольника АКМ по теореме Пифагора Находим АМТогда площадь треугольника АВС =(1/2)ВС*АМ
1. Нехай ∠1 = х (°), тоді ∠2 = x+20 (°). Сумма внутрішніх односторонніх кутів при паралельних прямих і січній дорівнює 180° ⇒ ∠1+∠2 = 180°. Складемо і вирішимо рівняння:
x+20+x = 180
2x = 160
x = 80
Отже, градусна міра ∠1 = х = 80°, тоді ∠2 = х+20 = 80+20 = 100°.
Відповідь: 80°; 100°.
2. Нехай ∠1 = х (°), тоді ∠2 = 4x (°). Сумма внутрішніх односторонніх кутів при паралельних прямих і січній дорівнює 180° ⇒ ∠1+∠2 = 180°. Складемо і вирішимо рівняння:
x+4x = 180
5x = 180
x = 36
Отже, градусна міра ∠1 = х = 36°, тоді ∠2 = 4x = 4·36= 144°.
1. Нехай ∠1 = х (°), тоді ∠2 = x+20 (°). Сумма внутрішніх односторонніх кутів при паралельних прямих і січній дорівнює 180° ⇒ ∠1+∠2 = 180°. Складемо і вирішимо рівняння:
x+20+x = 180
2x = 160
x = 80
Отже, градусна міра ∠1 = х = 80°, тоді ∠2 = х+20 = 80+20 = 100°.
Відповідь: 80°; 100°.
2. Нехай ∠1 = х (°), тоді ∠2 = 4x (°). Сумма внутрішніх односторонніх кутів при паралельних прямих і січній дорівнює 180° ⇒ ∠1+∠2 = 180°. Складемо і вирішимо рівняння:
x+4x = 180
5x = 180
x = 36
Отже, градусна міра ∠1 = х = 36°, тоді ∠2 = 4x = 4·36= 144°.
Відповідь: 36°; 144°.