1) Обозначим радиус вписанной в прямоугольную трапецию окружности за х. Свойство трапеции, в которую вписана окружность, - сумма оснований равна сумме боковых сторон. Высота трапеции равна 2х. Наклонная боковая сторона равна √((2х)²+(28-21)²) = √(4х²+49). Поэтому 21+28 = 2х + √(4х²+49). Перенесём 2х влево и возведём в квадрат. (49-2х)² = 4х²+49. 2401 - 196х + 4х² = 4х²+49. 196х = 2401 - 49 = 2352. х = 2352/196 = 12 см. Высота трапеции равна 2х = 2*12 = 24 см. Площадь трапеции равна 24*((21+28)/2) = 24* 24,5 = 588 см².
2) Примем один катет за х, второй за у. Квадрат гипотенузы равен х²+у² (это площадь). Площадь треугольника равна (1/2)ху. По заданию х²+у² = 4*((1/2)ху). х²+у² = 2ху. х² - 2ху +у² = 0. (х - у)² = 0. х - у = 0. х = у. Это равнобедренный треугольник, его острые углы равны по 45 градусов.
11 градусов
Объяснение:
начертим прямоугольный треугольник АВС так, что бы справа у него был прямой угол.
проведём из прямого угла сначала медиану, а потом биссектрису другим цветом(что б не запутаться.)
Обазначим медиану СD, а биссектрису СX
Слева будет острый угол, равный 34.
тогда по свойству прям. угол. треуг. медиана, проведённая из вершины прямого угла равна половине гипотенузы.
Отмечаем это на черчеже.
Видим, что у нас образовался р/б треугольгик АСD.
У него есть острый угол равный 34- по мусловию.
Тогда по св0ву р/б треуг. углы при основании равны.
тогда угол DCA равен 34.
Но мы знаем, что биссектриса делит прямой угол пополам.
Тогда угол ВСА : 2 равно 45 равно углы DCX и XCA.
Теперь мы вычитаем из угла XCA угол DCA равно 45-34=11 градусов
Равно угол XCD
Свойство трапеции, в которую вписана окружность, - сумма оснований равна сумме боковых сторон.
Высота трапеции равна 2х.
Наклонная боковая сторона равна √((2х)²+(28-21)²) = √(4х²+49).
Поэтому 21+28 = 2х + √(4х²+49).
Перенесём 2х влево и возведём в квадрат.
(49-2х)² = 4х²+49.
2401 - 196х + 4х² = 4х²+49.
196х = 2401 - 49 = 2352.
х = 2352/196 = 12 см.
Высота трапеции равна 2х = 2*12 = 24 см.
Площадь трапеции равна 24*((21+28)/2) = 24* 24,5 = 588 см².
2) Примем один катет за х, второй за у.
Квадрат гипотенузы равен х²+у² (это площадь).
Площадь треугольника равна (1/2)ху.
По заданию х²+у² = 4*((1/2)ху).
х²+у² = 2ху.
х² - 2ху +у² = 0.
(х - у)² = 0.
х - у = 0.
х = у.
Это равнобедренный треугольник, его острые углы равны по 45 градусов.