Abcd - правильный тетраэдр. вершины a и в лежат на прямой l1, вершины c и d - на ппямой l2. какой угол образуют прямые l1 и l2? как расположены точки а и в и точки c и d на прямых l1 и l2 относительно их общего перпендикуляра mn? чему равно отношение mn: ab?
основание призмы - квадрат
S квадрата = а², а - сторона квадрата
D=25 см
H=15 см
1. прямоугольный треугольник:
гипотенуза D=25 см - диагональ правильной четырехугольной призмы
катет Н = 15 см - высота правильной четырехугольной призмы
катет d - диагональ основания правильной четырехугольной призмы, найти по теореме Пифагора
D²=H²+d²
25²=15²+d², d²=25²-15², d²=625-225. d²=400
2. прямоугольный треугольник:
катет а= катету b
гипотенуза d (диагональ квадрата)
по теореме Пифагора:
a²+a³=d³, 2a²=d²
2a²=400
a²=200, => S квадрата =200 см²
ответ:
площадь основания правильной четырехугольной призмы =200 см²
при этом образуется второй треугольник при прямом угле-АВС и из условия известно, что угол между ВС-меньшим основанием и между АС-меньшей диагональю=50-уголВСА
1) угол ВАС=180-уголВСА-уголАВС=180-50-90=40
2)т.к. трапеция прямоугольна, то изначально углы СВАи ВАД были прямыми, равными 90 градусам=>уголСАД=уголВАД(90градусов)-уголВАС(из первого решения)=90-40=50
мы в нчале выяснили, что треугольник САД-равнобедренный, соответственно углы при основании САД=СДА=50