По определению, две прямые параллельны, если существует плоскость в которой лежат две эти прямые, и они там параллельны. Отметим на данной прямой точки A и B. А точку обозначим как O. Пусть через точку О проходят две прямые параллельные AB. Пусть -- плоскость, содержащая одновременно и AB (эта плоскость существует из определения). Аналогично определяем плоскость . Заметим, что и проходят через точки O, A, B. Но по аксиоме через три точки, не лежащие на одной прямой проходит только одна плоскость. Значит плоскости = S совпадают. (назовём их общим именем S). Рассмотрим плоскость S: в ней лежат точки O, A, B и две прямые . Причем, проходят через точку O и параллельны AB. Но по аксиоме планиметрии (напомню, мы сейчас живем в плоскости S для которой выполнены все аксиомы планиметрии) через точку O может проходить лишь одна прямая, параллельная AB. Значит , ч.т.д.
1)два угла называются вертикальными,если стороны одного угла являются продолжениями сторон другого. вертикальные углы равны 2)два угла,у которых одна сторона общая,а две других являются продолжениями одна другой,называются смежными сумма смежных углов равна 180° 3)две пересекающиеся прямые называются перпендикулярными, если они образуют четыре прямых угла 4)равнобедренный,равносторонний, прямоугольный 5)катеты и гипотенуза 6)отрезок,соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника 7)перпендикуляр,проведенный из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника 8)медианы треугольника пересекаются в одной точке 9)не могу найти в учебнике 10)две прямые на плоскости называются параллельными , если они не пересекаются там много теорем мне лень писать
Объяснение:
По определению, две прямые параллельны, если существует плоскость в которой лежат две эти прямые, и они там параллельны. Отметим на данной прямой точки A и B. А точку обозначим как O. Пусть через точку О проходят две прямые параллельные AB. Пусть -- плоскость, содержащая одновременно и AB (эта плоскость существует из определения). Аналогично определяем плоскость . Заметим, что и проходят через точки O, A, B. Но по аксиоме через три точки, не лежащие на одной прямой проходит только одна плоскость. Значит плоскости = S совпадают. (назовём их общим именем S). Рассмотрим плоскость S: в ней лежат точки O, A, B и две прямые . Причем, проходят через точку O и параллельны AB. Но по аксиоме планиметрии (напомню, мы сейчас живем в плоскости S для которой выполнены все аксиомы планиметрии) через точку O может проходить лишь одна прямая, параллельная AB. Значит , ч.т.д.
вертикальные углы равны
2)два угла,у которых одна сторона общая,а две других являются продолжениями одна другой,называются смежными
сумма смежных углов равна 180°
3)две пересекающиеся прямые называются перпендикулярными, если они образуют четыре прямых угла
4)равнобедренный,равносторонний, прямоугольный
5)катеты и гипотенуза
6)отрезок,соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника
7)перпендикуляр,проведенный из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника
8)медианы треугольника пересекаются в одной точке
9)не могу найти в учебнике
10)две прямые на плоскости называются параллельными , если они не пересекаются
там много теорем мне лень писать