Пусть биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке M, BAD = ( < 90o), AB = a, BC = b и b > a. Тогда
Следовательно, треугольник ABM — равнобедренный и BM = AB = a. Поэтому MC = b - a.
Расстояние между проведённой биссектрисой и биссектрисой угла BCD равно
Аналогично найдем, что расстояние между биссектрисами углов B и D равно (b - a)cos.
Четырёхугольник, ограниченный указанными биссектрисами, — прямоугольник со сторонами, равными
Следовательно, его площадь равна
(a - b)2sin.
Пусть прямоугольник будет АВСД, а окружность имеет центр О.
Короткая сторона прямоугольника СД = АВ равна диаметру окружности (10см), следовательно, длинная сторона ВС=АД прямоугольника равна 17см.
Отрезок ОВ наклонён по углом 45°к сторонам АВ и ВС, поэтому ОВ √R² + R² = 5 √2.
ОА = ОВ = 5√2.
ОС = ОД = √((17 - 5)² + 5²) = √(144 + 25) = 13
Сумма расстояний от О до А, В, С, Д равна:
ОА +ОВ +ОС +ОД = 5√2 + 5√2 + 13 + 13 = 26 + 10√2
ответ: сумма расстояний от центра круга до вершин прямоугольника равна
(26 + 10√5)см
Пусть биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке M, BAD = ( < 90o), AB = a, BC = b и b > a. Тогда
BMA = MAD = MAB = .Следовательно, треугольник ABM — равнобедренный и BM = AB = a. Поэтому MC = b - a.
Расстояние между проведённой биссектрисой и биссектрисой угла BCD равно
MC sin = (b - a)sin.Аналогично найдем, что расстояние между биссектрисами углов B и D равно (b - a)cos.
Четырёхугольник, ограниченный указанными биссектрисами, — прямоугольник со сторонами, равными
(b - a)sin, (b - a)cos.Следовательно, его площадь равна
(b - a)sin . (b - a)cos = (a - b)2sin.(a - b)2sin.
Пусть прямоугольник будет АВСД, а окружность имеет центр О.
Короткая сторона прямоугольника СД = АВ равна диаметру окружности (10см), следовательно, длинная сторона ВС=АД прямоугольника равна 17см.
Отрезок ОВ наклонён по углом 45°к сторонам АВ и ВС, поэтому ОВ √R² + R² = 5 √2.
ОА = ОВ = 5√2.
ОС = ОД = √((17 - 5)² + 5²) = √(144 + 25) = 13
Сумма расстояний от О до А, В, С, Д равна:
ОА +ОВ +ОС +ОД = 5√2 + 5√2 + 13 + 13 = 26 + 10√2
ответ: сумма расстояний от центра круга до вершин прямоугольника равна
(26 + 10√5)см