Если все двугранные углы при ребрах основания равны, то вершина пирамиды проецируется в центр вписанной в основание окружности, то есть в центр квадрата (основания). Итак, пирамида правильная. Тогда из прямоугольного треугольника (высота и половина основания - катеты, а апофема - гипотенуза) по Пифагору находим эту апофему. Она равна √(9+16) = 5 (эту величину можно найти без вычислений, так как треугольник пифагоров: стороны его 3,4 и 5) Тогда одной площадь грани равна половина стороны основания, умноженная на апофему: 5*4=20см. А площадь боковой поверхности пирамиды (это 4 равных грани) равна 20*4 =80см².
Ну вот смотрите. если взять точку внутри этого девятиугольника и провести из неё перпендикуляры ко всем сторонам, то угол между двумя такими перпендикулярами равен углу между сторонами, к которым они проведены (углы равны, если их стороны перпендикулярны попарно). Если брать два соседних перпендикуляра, то угол между ними как раз равен внешнему углу девятиугольника. Это означает, что сумма всех внешних углов девятиугольника (и вообще любого выпуклого многоугольника) равна 360°; Так как все эти внешние углы равны, - ответ 360°/9 = 40°;
Тут рядом лежит и вычисления суммы внутренних углов α1, α2, ... αN Как только что найдено, (180° - α1) + (180° - α2) + + (180° - αN) = 360°; поэтому α1 + α2 + + αN = N*180° - 360° = (N - 2)*180°; Эту же формулу можно получить, проведя все N - 3 диагонали из одной (все равно какой) вершины, которые разобьют многоугольник на N - 2 треугольника. Соответственно, так получается другое решение этой задачи. Действительно, сумма внутренних углов девятиугольника 180°(9 - 2) = 7*180°; каждый внутренний угол (если они равны) 7*180°/9 = 7*20° = 140°; откуда внешний угол равен 180° - 140° = 40°;
Так как все эти внешние углы равны, - ответ 360°/9 = 40°;
Тут рядом лежит и вычисления суммы внутренних углов α1, α2, ... αN
Как только что найдено,
(180° - α1) + (180° - α2) + + (180° - αN) = 360°;
поэтому
α1 + α2 + + αN = N*180° - 360° = (N - 2)*180°;
Эту же формулу можно получить, проведя все N - 3 диагонали из одной (все равно какой) вершины, которые разобьют многоугольник на N - 2 треугольника.
Соответственно, так получается другое решение этой задачи.
Действительно, сумма внутренних углов девятиугольника 180°(9 - 2) = 7*180°; каждый внутренний угол (если они равны) 7*180°/9 = 7*20° = 140°; откуда внешний угол равен 180° - 140° = 40°;