1. S= 1\2*(высота*основание). 1\2*(6*12)=72\2=56см в кубе.
2.Гипотенуза по теореме Пифагора=10, S=1\2*(катет*катет2)=48\2=24см в кубе.
3.Найдем катет по теореме Пифагора одного из треугольников (BCO). =5. P=5(катет)*4(кол-во сторон)=20см. S= сначала одного треугольника. 1\2*(4*3)(по половине диагоналей)=12:2=6см в кубе. 6*4(количество треугольников в ромбе)=24см в кубе.
4.Так как острый угол трапеции - 45 град, треугольник СНК - равнобедренный. По теореме Пифагора найдем катеты
2х²=(3√2)²
2х²=18
х²=9
х=3
Тогда основания трапеции: ВС=3 АК=2*3=6 Высота СН=3
1) Вначале надо найти уравнение прямой, проходящей через центр окружности и перпендикулярной заданной прямой 6x+8y-1=0. Уравнение 6x+8y-1=0 преобразуем: у = (-6/8)х + (1/8) или у = (-3/4)х + (1/8). Уравнение перпендикулярной прямой имеет вид у = (-1/к)*х + в. у = (4/3)х + в. Для определения коэффициента в подставим координаты точки О: -1 = (4/3)*1 + в, в = -1 - (4/3) = -7/3. Получаем уравнение у = (4/3)х - (7/3).
2) Находим точки пересечения окружности и перпендикулярной прямой. Для этого решаем систему уравнений: (х-1)²+(у+1)² = 4, у = (4/3)х - (7/3). Используя подстановки, получаем 2 точки касания: А(-0,2; -2,6) и В(2,2; 0,6) или А((-1/5); (-13/5)) и В((11/5); (3/5)).
3) Находим уравнения прямых, проходящих через найденные точки параллельно заданной прямой 6x+8y-1=0 или у = (-3/4)х + (1/8). У этих параллельных прямых коэффициенты перед х равны (-3/4), а коэффициенты в находим подстановкой координат точек касания А и В. -13/5= (-3/4)*(-1/5) + в, в = (-13/5) - (3/20) = -55/20 = -11/4. Получаем уравнение первой прямой: у = (-3/4)х - (11/4).
3/5 = (-3/4)*(11/5) + в, в = (3/5) + (33/20) = 45/20 = 9/4. Получаем уравнение второй прямой: у = (-3/4)х + (9/4).
1. S= 1\2*(высота*основание). 1\2*(6*12)=72\2=56см в кубе.
2.Гипотенуза по теореме Пифагора=10, S=1\2*(катет*катет2)=48\2=24см в кубе.
3.Найдем катет по теореме Пифагора одного из треугольников (BCO). =5. P=5(катет)*4(кол-во сторон)=20см. S= сначала одного треугольника. 1\2*(4*3)(по половине диагоналей)=12:2=6см в кубе. 6*4(количество треугольников в ромбе)=24см в кубе.
4.Так как острый угол трапеции - 45 град, треугольник СНК - равнобедренный. По теореме Пифагора найдем катеты
2х²=(3√2)²
2х²=18
х²=9
х=3
Тогда основания трапеции: ВС=3 АК=2*3=6 Высота СН=3
Можем вычислить площадь трапеции
S=(3+6)*3/2
S=13.5см в кубе.
ух, есть!
Уравнение 6x+8y-1=0 преобразуем:
у = (-6/8)х + (1/8) или у = (-3/4)х + (1/8).
Уравнение перпендикулярной прямой имеет вид у = (-1/к)*х + в.
у = (4/3)х + в.
Для определения коэффициента в подставим координаты точки О:
-1 = (4/3)*1 + в,
в = -1 - (4/3) = -7/3.
Получаем уравнение у = (4/3)х - (7/3).
2) Находим точки пересечения окружности и перпендикулярной прямой.
Для этого решаем систему уравнений:
(х-1)²+(у+1)² = 4,
у = (4/3)х - (7/3).
Используя подстановки, получаем 2 точки касания:
А(-0,2; -2,6) и В(2,2; 0,6) или А((-1/5); (-13/5)) и В((11/5); (3/5)).
3) Находим уравнения прямых, проходящих через найденные точки параллельно заданной прямой 6x+8y-1=0 или у = (-3/4)х + (1/8).
У этих параллельных прямых коэффициенты перед х равны (-3/4), а коэффициенты в находим подстановкой координат точек касания А и В.
-13/5= (-3/4)*(-1/5) + в,
в = (-13/5) - (3/20) = -55/20 = -11/4.
Получаем уравнение первой прямой: у = (-3/4)х - (11/4).
3/5 = (-3/4)*(11/5) + в,
в = (3/5) + (33/20) = 45/20 = 9/4.
Получаем уравнение второй прямой: у = (-3/4)х + (9/4).