ABCDA₁B₁C₁D₁ - прямокутний паралелепіпед, у якому AB = a; AA₁ = m; AD = n. Чому дорівнює відстань: а) від прямої BB₁ до площини DCD₁ ; б) між площинами ABD i A₁B₁D₁ ?
В ромбе АВСD высота из тупого угла В делит противоположную сторону пополам. Следовательно, эта высота является и медианой. Значит треугольник АВD - равносторонний и сторона равна меньшей диагонали. Углы такого ромба равны: <A=60°, <B=120°, <C=60° и <D=120°. Предположим, что дана большая диагональ. Тогда в прямоугольном треугольнике АВО (один из четырех, на которые делят ромб его диагонали) <BAO=30° и против него лежит половина меньшей диагонали. Пусть она равна Х, тогда сторона ромба (гипотенуза) равна 2Х и по Пифагору 4Х²-Х²=8² или 3Х²=64, а Х²=64/3. Отсюда Х=8√3/3. Это половина меньшей диагонали BD,в диагональ BD=16√3/3≈9,24 см, то есть сторона ромба равна 16√3/3≈9,24 см. Если дана диагональ меньшая, то по Пифагору половина большей диагонали равна √(16²-8²)=8√3, а диагональ CD=16√3. тогда сторона ромба равна его меньшей диагонали =16 см. ответ: если дана меньшая диагонал, то сторона ромба равна 16см. если дана большая диагональ, то сторона ромба равна ≈9,24 см. Углы ромба равны два по 60° и два по120°.
Предположим, что дана большая диагональ. Тогда в прямоугольном треугольнике АВО (один из четырех, на которые делят ромб его диагонали) <BAO=30° и против него лежит половина меньшей диагонали. Пусть она равна Х, тогда сторона ромба (гипотенуза) равна 2Х и по Пифагору 4Х²-Х²=8² или 3Х²=64, а Х²=64/3. Отсюда Х=8√3/3.
Это половина меньшей диагонали BD,в диагональ BD=16√3/3≈9,24 см, то есть сторона ромба равна 16√3/3≈9,24 см.
Если дана диагональ меньшая, то по Пифагору половина большей диагонали равна √(16²-8²)=8√3, а диагональ CD=16√3.
тогда сторона ромба равна его меньшей диагонали =16 см.
ответ: если дана меньшая диагонал, то сторона ромба равна 16см.
если дана большая диагональ, то сторона ромба равна ≈9,24 см.
Углы ромба равны два по 60° и два по120°.
Катеты прямоугольного треугольника равны 12 см и 16 см. Найдите длину биссектрисы треугольника, проведенную из вершины большего острого угла.
ответ: 6√5 см
Объяснение:
Пусть в треугольнике АВС угол С=90°, АС=12 см, СВ=16 см, АК - биссектриса.
Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
Примем длину СК=х, ВК=у. Тогда х:у=АС:АВ.
По т.Пифагора АВ=√(АС*+ВС*)=√(144+256)=20 ⇒
х:у=12:20=3/5 Следовательно, ВС состоит из х+у=3+5=8 частей. Длина каждой части 16:8=2 см. ⇒ СК=2•3=6 см
Из прямоугольного ∆ АСК по т.Пифагора АК=√(AC²+CK²)=√(144+36)=√180=6√5 см