Эти два равнобедренных треугольника подобны, т.к. имеют равный угол, противолежащий их основаниям, и тем самым это обеспечивает равенство их углов при основании.Коэффициент их подобия равен коэффициенту отношения их периметров, т.е. он равен 15:10=1,5 Найдём стороны второго треугольника, у которого периметр равен 10. У первого треугольника, у которого периметр равен 15-ти см, боковая сторона равна 6-ти см. Отсюда находим боковую сторону второго треугольника: 1,5=6:x x=6:1,5=4 см. Отсюда его основание равно: 10-2*4(боковые стороны у равнобедренного треугольника равна друг другу)=2 см. А коэффициент подобия треугольников из предоставленных вариантов написан в варианте номер 3. ответ: Боковые стороны второго треугольника равны 4-ём см, а основания 2-ум см. Коэффициент подобия треугольников равен 1,5=3:2(вариант №3).
1) Так как на луче точки В и С можно расположить двумя то нужно рассмотреть оба. В первом случае, если порядок точек А В С, отрезок АВ будет равен 7,8-2,5=5,3 см. Во втором случае при порядке точек А С В отрезок АВ будет равен 7,8+2,5=10,3 см.
2) Углы, образованные пересечением двух прямых, являются смежными и вертикальными. Берем два смежных угла. По условию один угол меньше другого на 22°. Сумма смежных углов 180°. Находим меньший угол - (180°-22°):2=79° Больший угол равен 79°+22°=101°
Найдём стороны второго треугольника, у которого периметр равен 10.
У первого треугольника, у которого периметр равен 15-ти см, боковая сторона равна 6-ти см. Отсюда находим боковую сторону второго треугольника:
1,5=6:x
x=6:1,5=4 см.
Отсюда его основание равно: 10-2*4(боковые стороны у равнобедренного треугольника равна друг другу)=2 см.
А коэффициент подобия треугольников из предоставленных вариантов написан в варианте номер 3.
ответ: Боковые стороны второго треугольника равны 4-ём см, а основания 2-ум см. Коэффициент подобия треугольников равен 1,5=3:2(вариант №3).
1) Так как на луче точки В и С можно расположить двумя то нужно рассмотреть оба. В первом случае, если порядок точек А В С, отрезок АВ будет равен 7,8-2,5=5,3 см. Во втором случае при порядке точек А С В отрезок АВ будет равен 7,8+2,5=10,3 см.
2) Углы, образованные пересечением двух прямых, являются смежными и вертикальными. Берем два смежных угла. По условию один угол меньше другого на 22°. Сумма смежных углов 180°. Находим меньший угол - (180°-22°):2=79° Больший угол равен 79°+22°=101°
1) 5,3 см и 10,3см
2) 79° и 101°
3) 18° и 162°