AC- биссектриса <BAD и AB=AD. Докажите, что треугольник ABC= треугольнику DAC. Найдите периметр треугольника АДС, если AB=2,5 см, BC= 1,7 см, AC= 0,9 см !
Площади подобных многоугольников относятся как квадрат коэффициента подобия k² = S₂/S₁ = 10/9 k = √(10/9) = √10/3 Периметры подобных многоугольников относятся как коэффициент подобия k = P₂/P₁ = √10/3 P₂ = P₁*√10/3 И по условию разность периметров равна 10 см P₂ - P₁ = 10
P₁*√10/3 - P₁ = 10 P₁(√10/3 - 1) = 10 P₁ = 10/(√10/3 - 1) Можно избавиться от иррациональности в знаменателе, домножив верх и низ дроби на (√10/3 + 1) P₁ = 10*(√10/3 + 1)/((√10/3)² - 1) = 10*(√10/3 + 1)/(10/9 - 1) = 10*(√10/3 + 1)*9 = 30√10 + 90 см
Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.
Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника.
Любой треугольник имеет три медианы. Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны, называется биссектрисой треугольника. Любой треугольник имеет три биссектрисы. Перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника. Любой треугольник имеет три высоты. Медианы, биссектрисы и высоты треугольника обладают замечательными свойствами:
Медианы треугольника пересекаются в одной точке;
биссектрисы треугольника пересекаются в одной точке;
высоты треугольника или их продолжения также пересекаются в одной точке
k² = S₂/S₁ = 10/9
k = √(10/9) = √10/3
Периметры подобных многоугольников относятся как коэффициент подобия
k = P₂/P₁ = √10/3
P₂ = P₁*√10/3
И по условию разность периметров равна 10 см
P₂ - P₁ = 10
P₁*√10/3 - P₁ = 10
P₁(√10/3 - 1) = 10
P₁ = 10/(√10/3 - 1)
Можно избавиться от иррациональности в знаменателе, домножив верх и низ дроби на (√10/3 + 1)
P₁ = 10*(√10/3 + 1)/((√10/3)² - 1) = 10*(√10/3 + 1)/(10/9 - 1) = 10*(√10/3 + 1)*9 = 30√10 + 90 см
P₂ - P₁ = 10
P₂ = P₁ + 10 = 30√10 + 100 см
Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.
Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника.
Любой треугольник имеет три медианы. Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны, называется биссектрисой треугольника. Любой треугольник имеет три биссектрисы. Перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника. Любой треугольник имеет три высоты. Медианы, биссектрисы и высоты треугольника обладают замечательными свойствами:
Медианы треугольника пересекаются в одной точке;
биссектрисы треугольника пересекаются в одной точке;
высоты треугольника или их продолжения также пересекаются в одной точке