Теорема Чевы. Дан треугольник и точки на сторонах BC, AC и AB соответственно. Отрезки пересекаются в одной точке тогда и только тогда, когда
Лемма. Если числа таковы, что
то
,
лишь бы знаменатель в ноль не обращался.
Доказательство леммы. Оно элементарно. Кстати, те, кто в первый раз видит эту лемму, очень часто реагируют так: "Вы что же, числители и знаменатели складываете?! У нас в школе за это двойки ставят!" Впрочем, присмотревшись к утверждению и убедившись, что мы не собираемся таким образом дроби складывать, обычно все успокаиваются, особенно разобравшись в доказательстве.
Обозначим общее значение дробей и буквой Тогда
что и требовалось доказать.
Чтобы эта лемма стала совсем очевидной, хочется привести еще и то, что я иногда называю ПОКАЗАТЕЛЬСТВОМ, то есть рассуждение, не претендующее на роль строгого рассуждения, но приблизиться к "кухне математика". Итак, представьте две карты некой местности в разных масштабах, a - это расстояние между пунктами D и E, b - между E и F на одной карте, b и d - аналогичные расстояния на другой карте. В этом случае - это отношение масштабов карт. Ясно, что если мы сложим a и c, то получим длину маршрута от первого пункта через второй к третьему на первой карте, а сложив b и d - длину маршрута на второй карте. Понятно, что их отношение снова равно отношению масштабов карт.
Доказательство теоремы.
1. Пусть указанные отрезки пересекаются в точке , тогда треугольник оказывается разбит на 6 треугольников, занумерованных так, как указано на чертеже. Рассмотрим первую дробь
Поскольку числитель и знаменатель этой дроби являются основаниями треугольников и с общей высотой, дробь не изменится, если заменить числитель и знаменатель на площади указанных треугольников. А заметив, что на тех же основаниях стоят треугольники и , можно заменить числитель и знаменатель и на их площади.
Поэтому
Воспользуемся теперь леммой: дроби не изменятся, если взять разность числителей и разность знаменателей:
Проведя аналогичное рассуждение для двух других дробей, получаем:
что и доказывает теорему Чевы в одну сторону.
2. Пусть не пересекаются в одной точке.Проведем через точку пересечения и отрезок (точка расположена на стороне ). По доказанному,
Если бы было выполнено
,
то
что невозможно при
(скажем, если точки на стороне расположены в порядке то числитель первой дроби больше числителя второй дроби, а знаменатель первой дроби меньше знаменателя второй, значит, первая дробь больше второй).
На этом доказательство завершается.
Замечание. Нетрудно получить тригонометрическую форму теоремы Чевы. Воспользуемся для этого теоремой синусов:
Аналогично получаем
Отсюда получается новая формулировка теоремы Чевы.
Отрезки пересекаются в одной точке тогда и только тогда, когда
Примеры.
1) Медианы пересекаются в одной точке, поскольку все три дроби в основной формулировке теоремы Чевы равны 1.
2) Биссектрисы пересекаются в одной точке. Здесь удобнее воспользоваться теоремой Чевы в тригонометрической форме.
3) Высоты в остроугольном треугольнике пересекаются в одной точке. Опять легче воспользоваться тригонометрической формой.
Вариант решения. Проведем высоту ВН ( которая в равнобедренном треугольнике является и медианой) к АС. Т.к. ВН - срединный перпендикуляр к АС , то центр описанной вокруг ∆ АВС окружности лежит на ВН, и точка О пересечения ВН и диаметра DС - центр данной окружности. Проведем отрезок АD. Треугольник DАС - прямоугольный (∠DАС опирается на диаметр) DА ⊥АС, ВН ⊥ АС ⇒ DА || ВН ∠ DАВ=∠ АВО как накрестлежащие при параллельных прямых AD и BH и секущей АВ . Углы при М равны как вертикальные ⇒ ∆ АМD подобен ∆ МВО по трем углам ⇒ DМ:МО=АМ:МВ=1/k ⇒ MO=DM*k МС=ОС+МО ОС=DМ+МО=DМk+DМ МС=DМk+DМ+DМk=2DМk+DМ=DМ(2k+1) DМ:МС=DМ:DМ(2k+1)=1/(2k+1)
на сторонах BC, AC и AB соответственно. Отрезки
пересекаются в одной точке тогда и только тогда, когда
Лемма. Если числа таковы, что
то
,
лишь бы знаменатель в ноль не обращался.
Доказательство леммы. Оно элементарно. Кстати, те, кто в первый раз видит эту лемму, очень часто реагируют так: "Вы что же, числители и знаменатели складываете?! У нас в школе за это двойки ставят!" Впрочем, присмотревшись к утверждению и убедившись, что мы не собираемся таким образом дроби складывать, обычно все успокаиваются, особенно разобравшись в доказательстве.
Обозначим общее значение дробей и
буквой
Тогда
что и требовалось доказать.
Чтобы эта лемма стала совсем очевидной, хочется привести еще и то, что я иногда называю ПОКАЗАТЕЛЬСТВОМ, то есть рассуждение, не претендующее на роль строгого рассуждения, но приблизиться к "кухне математика". Итак, представьте две карты некой местности в разных масштабах, a - это расстояние между пунктами D и E, b - между E и F на одной карте, b и d - аналогичные расстояния на другой карте. В этом случае - это отношение масштабов карт. Ясно, что если мы сложим a и c, то получим длину маршрута от первого пункта через второй к третьему на первой карте, а сложив b и d - длину маршрута на второй карте. Понятно, что их отношение снова равно отношению масштабов карт.
Доказательство теоремы.
1. Пусть указанные отрезки пересекаются в точке , тогда треугольник оказывается разбит на 6 треугольников, занумерованных так, как указано на чертеже. Рассмотрим первую дробь
Поскольку числитель и знаменатель этой дроби являются основаниями треугольников и с общей высотой, дробь не изменится, если заменить числитель и знаменатель на площади указанных треугольников. А заметив, что на тех же основаниях стоят треугольники
и , можно заменить числитель и знаменатель и на их площади.
Поэтому
Воспользуемся теперь леммой: дроби не изменятся, если взять разность числителей и разность знаменателей:
Проведя аналогичное рассуждение для двух других дробей, получаем:
что и доказывает теорему Чевы в одну сторону.
2. Пусть не пересекаются в одной точке.Проведем через точку пересечения и
отрезок (точка расположена на стороне ).
По доказанному,
Если бы было выполнено
,
то
что невозможно при
(скажем, если точки на стороне
расположены в порядке
то числитель первой дроби больше числителя второй дроби, а знаменатель первой дроби меньше знаменателя второй, значит, первая дробь больше второй).
На этом доказательство завершается.
Замечание. Нетрудно получить тригонометрическую форму теоремы Чевы.
Воспользуемся для этого теоремой синусов:
Аналогично получаем
Отсюда получается новая формулировка теоремы Чевы.
Отрезки пересекаются в одной точке тогда и только тогда, когда
Примеры.
1) Медианы пересекаются в одной точке, поскольку все три дроби в основной формулировке теоремы Чевы равны 1.
2) Биссектрисы пересекаются в одной точке. Здесь удобнее воспользоваться теоремой Чевы в тригонометрической форме.
3) Высоты в остроугольном треугольнике пересекаются в одной точке. Опять легче воспользоваться тригонометрической формой.
Проведем высоту ВН ( которая в равнобедренном треугольнике является и медианой) к АС.
Т.к. ВН - срединный перпендикуляр к АС , то
центр описанной вокруг ∆ АВС окружности лежит на ВН, и
точка О пересечения ВН и диаметра DС - центр данной окружности.
Проведем отрезок АD.
Треугольник DАС - прямоугольный (∠DАС опирается на диаметр)
DА ⊥АС, ВН ⊥ АС ⇒ DА || ВН
∠ DАВ=∠ АВО как накрестлежащие при параллельных прямых AD и BH и секущей АВ .
Углы при М равны как вертикальные ⇒
∆ АМD подобен ∆ МВО по трем углам ⇒
DМ:МО=АМ:МВ=1/k ⇒
MO=DM*k
МС=ОС+МО
ОС=DМ+МО=DМk+DМ
МС=DМk+DМ+DМk=2DМk+DМ=DМ(2k+1)
DМ:МС=DМ:DМ(2k+1)=1/(2k+1)