АЕ - биссектриса треугольника АВС( АВС равнобедренный), точка D лежит на стороне АС таким образом, что угол DBC =угол A+ угол С Докажите, что DE- биссектриса угла BDC.
ΔОСВ равносторонний. В нем углы при вершинах С и В равны.т.к. ОС=ОВ= радиусы одной окружности. Т.е. равнобедренный получается. но поскольку углы С и В еще и по 60°в, то и угол О в этом треугольнике 60 °. Тогда внешний угол АОВ равен сумме двух внутренних ∠ В и ∠С, с ним не смежными, т.е. он равен 60°+60°=120°, а тогда в равнобедренном треуг. АОВ ∠ А =∠ В= 30 °,
(180°-120°)/2=30°, как углы при основании равнобедренного ΔАОВ, т.к. АО и ВО радиусы одной окружности и ∠DАС = 90°, т.к. радиус, проведенный в точку касания перпендикулярен касательной АD, значит, искомый ∠ DАВ =90°-30°=60°
Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно этой диагонали. [1]Правильная четырехугольная усеченная пирамида разделена на три части двумя плоскостями, проведенными через две противоположные стороны меньшего основания перпендикулярно плоскости большего основания. [2]Правильная четырехугольная усеченная пирамида разделена на три части двумя плоскостями, проведенными через две противоположные стороны меньшего основания перпендикулярно к плоскости большего основания. Определить объем каждой части, если в усеченной пирамиде высота равна 4 см, а стороны оснований 2 см и 5 см Сделать чертеж. [3]Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к этой диагонали. [4]Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к ней. [5]Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к этой диагонали. [6]Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения. [7]Высота правильной четырехугольной усеченной пирамиды равна 7 см. Стороны оснований 10 см и 2 см. Определить боковое ребро пирамиды. [8]Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения. [9]Из правильной четырехугольной усеченной пирамиды вырезана часть ее в виде двух пирамид, имеющих общую вершину в точке пересечения ее диагоналей, а основаниями - ее основания. [10]Высота правильной четырехугольной усеченной пирамиды равна 7 см. Стороны оснований 10 см и 2 см. Определить боковое ребро пирамиды. [11]Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения, перпендикулярного к основанию. [12]Высота правильной четырехугольной усеченной пирамиды равна Я, боковое ребро и диагональ пирамиды наклонены к плоскости ее основания под углами и и р Найти ее боковую поверхность. [13]Высота правильной четырехугольной усеченной пирамиды равна 7 см, а стороны оснований равны 10 и 2 см. Найдите боковое ребро пирамиды. [14]Высота правильной четырехугольной усеченной пирамиды равна 7 см, а стороны оснований 10 см и 2 см. Найти боковое ребро пирамиды. [15]
ΔОСВ равносторонний. В нем углы при вершинах С и В равны.т.к. ОС=ОВ= радиусы одной окружности. Т.е. равнобедренный получается. но поскольку углы С и В еще и по 60°в, то и угол О в этом треугольнике 60 °. Тогда внешний угол АОВ равен сумме двух внутренних ∠ В и ∠С, с ним не смежными, т.е. он равен 60°+60°=120°, а тогда в равнобедренном треуг. АОВ ∠ А =∠ В= 30 °,
(180°-120°)/2=30°, как углы при основании равнобедренного ΔАОВ, т.к. АО и ВО радиусы одной окружности и ∠DАС = 90°, т.к. радиус, проведенный в точку касания перпендикулярен касательной АD, значит, искомый ∠ DАВ =90°-30°=60°
ответ 60 °
Объяснение: