1. Треугольники равны по сторонам AO и OC, DO и OB + углы DOC и AOB,которые равны по свойству вертикальных углов
4. По свойству параллельных прямых (BC и AD), углы ABD и DBC равны , 2 ранвых угла и две равные стороны
7. По свойству параллельных прямых, углы MKN и KNP равны+ это параллелограмм, по его свойствам
2 общих стороны и один общий ушол
10.
Углы EFA и BFD равны как вертикальные,а AE и BD составляют одинаковое расстояние от равных сторон AC и BC
Поэтому BD=AE
Равны по двум равным углам и одной равной стороне
Для определения площади параллелограмма достаточно трёх точек.
Площадь равна модулю векторного произведения векторов АВ и ВС.
Находим векторы ВА и ВС.
ВА = (-3-2; 1-6) = (-5; -5),
ВС = (7--2; -1-6) = (5; -7)
Находим векторное произведение ВА и ВС.
i j k| i j
-5 -5 0| -5 -5
5 -7 0| 5 -7 = 0i + 0j + 35k - 0j - 0i + 25k = 0i + 0j + 60k.
Найдем модуль вектора:
|c| = √(cx² + cy² + cz²) = √(0² + 0² + (-60)²) = √(0 + 0 + 3600) = √3600 = 60
Найдем площадь параллелограмма:
S = 60.
1. Треугольники равны по сторонам AO и OC, DO и OB + углы DOC и AOB,которые равны по свойству вертикальных углов
4. По свойству параллельных прямых (BC и AD), углы ABD и DBC равны , 2 ранвых угла и две равные стороны
7. По свойству параллельных прямых, углы MKN и KNP равны+ это параллелограмм, по его свойствам
2 общих стороны и один общий ушол
10.
Углы EFA и BFD равны как вертикальные,а AE и BD составляют одинаковое расстояние от равных сторон AC и BC
Поэтому BD=AE
Равны по двум равным углам и одной равной стороне
Для определения площади параллелограмма достаточно трёх точек.
Площадь равна модулю векторного произведения векторов АВ и ВС.
Находим векторы ВА и ВС.
ВА = (-3-2; 1-6) = (-5; -5),
ВС = (7--2; -1-6) = (5; -7)
Находим векторное произведение ВА и ВС.
i j k| i j
-5 -5 0| -5 -5
5 -7 0| 5 -7 = 0i + 0j + 35k - 0j - 0i + 25k = 0i + 0j + 60k.
Найдем модуль вектора:
|c| = √(cx² + cy² + cz²) = √(0² + 0² + (-60)²) = √(0 + 0 + 3600) = √3600 = 60
Найдем площадь параллелограмма:
S = 60.