1) Пусть х - радиус цилиндра. тогда S/2=х(х+2). => Х²+2Х-48=0. Х=-1±√(1+48). х=6 (второй корень не удовлетворяет условию). ответ: R=6см, h=8см.
2) Сторону квадрата найдем по Пифагору: 2а²=36см², а=3√2. Значит R= 3√2/2см. Площадь боковой поверхности цилиндра: Sб=a²=18см² Площадь основания цилиндра: So=πR² = 4,5π. Площадь полной поверхности S=2*So+sб = 9π+18 =9(π+2)см² ответ: S=9(π+2)см².
3) Осевое сечение конуса - равнобедренный треугольник. Плоскость делит его на два подобных треугольника с коэффициентом подобия k=1/2. Тогда радиус сечения найдем по Пифагору: r=√[(17/2)²-(15/2)²] =4см. Площадь полученного сечения S=πR² = 16π. ответ: S=16π.
4) Трапеция равнобокая, значит периметр равен 5х+5х+5х+12х=54см. Отсюда х=2см и тогда основания трапеции равны 10см и 24см. Тогда длины окружностей равны L1=2πr = 2π*5 =10π L2=2πR = 2π*12 = 24π. Высота трапеции из тупого угла на основание делит его на две части, меньшая из которых равна полуразности оснований, то есть =7см. Тогда по Пифагору высота h=√(10²-7²)=√51. ответ: L1=10π см, L2=24π см, h=√51 см.
Обозначим искомые ребра:
AD = a, DC = b, DD₁ = c.
ΔADD₁: по теореме Пифагора
a² + c² = 64
ΔDCC₁: по теореме Пифагора
b² + c² = 100
ΔABD: по теореме Пифагора
a² + b² = 144
Сложим три уравнения получившейся системы:
2(a² + b² + c²) = 308
a² + b² + c² = 154
Теперь вычтем из получившегося уравнения каждое первоначальное уравнение:
1) b² = 90
b = √90 = 3√10 м
2) a² = 54
a = √54 = 3√6 м
3) с² = 10
с = √10 м
AD = 3√6 м, DC = 3√10 м, DD₁ = √10 м.
S/2=х(х+2). => Х²+2Х-48=0. Х=-1±√(1+48).
х=6 (второй корень не удовлетворяет условию).
ответ: R=6см, h=8см.
2) Сторону квадрата найдем по Пифагору: 2а²=36см², а=3√2. Значит
R= 3√2/2см.
Площадь боковой поверхности цилиндра: Sб=a²=18см²
Площадь основания цилиндра: So=πR² = 4,5π.
Площадь полной поверхности S=2*So+sб = 9π+18 =9(π+2)см²
ответ: S=9(π+2)см².
3) Осевое сечение конуса - равнобедренный треугольник.
Плоскость делит его на два подобных треугольника с коэффициентом подобия k=1/2.
Тогда радиус сечения найдем по Пифагору: r=√[(17/2)²-(15/2)²] =4см.
Площадь полученного сечения S=πR² = 16π.
ответ: S=16π.
4) Трапеция равнобокая, значит периметр равен 5х+5х+5х+12х=54см.
Отсюда х=2см и тогда основания трапеции равны 10см и 24см.
Тогда длины окружностей равны L1=2πr = 2π*5 =10π
L2=2πR = 2π*12 = 24π.
Высота трапеции из тупого угла на основание делит его на две части, меньшая из которых равна полуразности оснований, то есть =7см.
Тогда по Пифагору высота h=√(10²-7²)=√51.
ответ: L1=10π см, L2=24π см, h=√51 см.