task/24836913 ---.---.---.---.--- Дан острый угол с вершиной в точке О и точка M внутри этого угла, не лежащая на биссектрисе этого угла. Найти на сторонах угла точки A и B такие, что периметр треугольника MAB- наименьший (метод симметрии) ---------------------------------------- Решение : Условия "не лежащая на биссектрисе этого угла" не существенно Построим точки M₁ и M₂ симметричные M относительно сторон угла (a и b соответственно ). Прямая M₁M₂ пересекает стороны a и b угла O в точках A и B . ΔMAB искомый. Действительно,периметр ΔMAB : P=MA+AB + MB =M₁A+AB + M₂B =M₁M₂. Периметр же любого другого треугольника, например, ΔMXY : P₁=MX+AB+ MY = M₁X+AB + M₂Y || длина ломаной M₁XYM₂|| >M₁M₂= P.
ВД⊥АВ и АС⊥СД .
Проведём высоты СК⊥АД , ВН⊥АД .
ΔАСД - прямоугольный, СК - высота, проведённая из прямого угла ⇒
по свойству : СК²=АК*КД .
КД=АН=(АД-ВС):2=(25-7):2=9 , КН=ВС=7 , ДН=КН+КД=7+9=16 .
Аналогично находим АК=АН+НК=16
СК²=16*9=144 , СК=12 (см)
ΔВНД: ВН║СК (обозначим точку пересечения СК и ВД через Р) , тогда
ВН║РК ⇒ ΔВНД подобен ΔРКД ⇒ РК:ВН=КД:ДН
РК:12=9:16 ⇒ РК=12*9:16=6,75
СР=СК-КР=12-6,75=5,25
СР:РК=5,25:6,75=7:9
ответ: СР/РК=7/9
---.---.---.---.---
Дан острый угол с вершиной в точке О и точка M внутри этого угла, не лежащая на биссектрисе этого угла. Найти на сторонах угла точки A и B такие, что периметр треугольника MAB- наименьший (метод симметрии)
----------------------------------------
Решение :
Условия "не лежащая на биссектрисе этого угла" не существенно
Построим точки M₁ и M₂ симметричные M относительно сторон угла (a и b соответственно ). Прямая M₁M₂ пересекает стороны a и b угла O в точках A и B . ΔMAB искомый.
Действительно,периметр ΔMAB :
P=MA+AB + MB =M₁A+AB + M₂B =M₁M₂.
Периметр же любого другого треугольника, например, ΔMXY :
P₁=MX+AB+ MY = M₁X+AB + M₂Y || длина ломаной M₁XYM₂|| >M₁M₂= P.
рисунок см приложение