Дано: АВСD - равнобокая трапеция, АВ=СD= 6 см, МN- средняя линий, МО= 2 см; ОN=5 см. Найти: ∠ВАD, ∠АВС Решение. ΔАВС. ОМ- средняя линия, равна 2 см, значит ВС=4 см., средняя линия в 2 раза меньше ВС. ΔАСD. ОN- средняя линия равна 5 см. значит АD= 10 см.Построим СК║АВ. АВСК - параллелограмм, противоположные стороны параллельны и равны: АК=ВС=4 см.СК=АВ=6 см. ΔСDК равнобедренный: СК=СD= 6 см. Построим СН⊥АD, тогда КD=АD-АК=10-4=6 см. Но СН также является медианой в равнобедренном ΔКСD, значит КН=НD=6/2=3 см. ΔСDН. cosD=HD/CD=3/6=0,5. ∠НDС=60°. ∠ВАD=СDА=60°. ∠АВС=∠ВСD=180-60=120°. ответ: 60°; 120°.
Призма АВСДА1В1С1Д1, в основании квадрат, АС=ВД=2*корень2, АВ=ВС=СД=АД=корень(АС в квадрате/2)=корень(8/2)=2, О-пересечение диагоналей, АС1-диагональ призмы, проводим ОК параллельно АС1 на СС1,
треугольник ВКД-сечение призмы, ОК-высота треугольника равнобедренного ВКД, ОК=2*площадь сечения/ВД=2*2*корень3/(2*корень2)=корень6, треугольник АС1С прямоугольный, ОК-средняя линия треугольника=1/2АС1, АС1=2*корень6, треугольник АС1С прямоугольный , СС1=корень(АС1 в квадрате-АС в квадрате)=корень(24-8)=4 - высота призмы
площадь полная=2*площадь основания+площадь боковая=2*АД*СД+периметр*высота = 2*2*2+4*2*4=40
МО= 2 см; ОN=5 см.
Найти: ∠ВАD, ∠АВС
Решение.
ΔАВС. ОМ- средняя линия, равна 2 см, значит ВС=4 см., средняя линия в 2 раза меньше ВС.
ΔАСD. ОN- средняя линия равна 5 см. значит АD= 10 см.Построим СК║АВ. АВСК - параллелограмм, противоположные стороны параллельны и равны: АК=ВС=4 см.СК=АВ=6 см.
ΔСDК равнобедренный: СК=СD= 6 см.
Построим СН⊥АD, тогда КD=АD-АК=10-4=6 см. Но СН также является медианой в равнобедренном ΔКСD, значит КН=НD=6/2=3 см.
ΔСDН. cosD=HD/CD=3/6=0,5. ∠НDС=60°. ∠ВАD=СDА=60°.
∠АВС=∠ВСD=180-60=120°.
ответ: 60°; 120°.
треугольник ВКД-сечение призмы, ОК-высота треугольника равнобедренного ВКД, ОК=2*площадь сечения/ВД=2*2*корень3/(2*корень2)=корень6, треугольник АС1С прямоугольный, ОК-средняя линия треугольника=1/2АС1, АС1=2*корень6, треугольник АС1С прямоугольный , СС1=корень(АС1 в квадрате-АС в квадрате)=корень(24-8)=4 - высота призмы
площадь полная=2*площадь основания+площадь боковая=2*АД*СД+периметр*высота = 2*2*2+4*2*4=40