Пусть K вершина пирамиды, основание ABCD_ромб ; ∠BAD=30°; KO ⊥(ABCD) , KO =h (высота пирамиды) ; OE ⊥ AD ; ∠KEO =60°. E ∈ AD
Sпол -?
Sпол = Sосн + Sбок . Все грани с плоскостью основания составляют равны углы (в данном случае 60°),значит высота пирамиды проходит через центр O окружности вписанной в основании ABCD. Через точку O проведем прямую ,перпендикулярную AD (BC) ,которая пересекает сторону AD допустим в точке E ,а сторону BC в точке F. KE и KF будут апофемы соответственно боковых граней AKD и BKC.Из OE ⊥ AD⇒OE ⊥ KE (теорема трех перпендикуляров). Треугольник EKF_равносторонний: (∠KEO=∠KFO=60°) . Поэтому KE=KF=EF || =2*OE =2*r||. Из ΔKOE: KO =KE*√3/2 ⇒KE=2KO/√3 =2h/√3. KE=KF=EF =2h/√3. Найдем сторону основания.Из вершины B опускаем перпендикуляр BN на AD. EF =BN =AB/2 (катет против угла 30°)⇒ AB=2*EF. --- Sосн =AB*BN =2*EF*EF =2EF² . Sбок=4*(1/2)AD*KE=2AD*KE =2AB*KE =2*2*EF*KE =4EF². Sпол = Sосн + Sбок =2EF²+4EF² =6EF²=6*(2h/√3)² =(6*4/3)h²=8h².
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать
E ∈ AD
Sпол -?
Sпол = Sосн + Sбок .
Все грани с плоскостью основания составляют равны углы (в данном случае 60°),значит высота пирамиды проходит через центр O окружности вписанной в основании ABCD. Через точку O проведем прямую ,перпендикулярную AD (BC) ,которая пересекает сторону AD допустим в точке E ,а сторону BC в точке F. KE и KF будут апофемы соответственно боковых граней AKD и BKC.Из OE ⊥ AD⇒OE ⊥ KE
(теорема трех перпендикуляров). Треугольник EKF_равносторонний: (∠KEO=∠KFO=60°) . Поэтому KE=KF=EF || =2*OE =2*r||.
Из ΔKOE: KO =KE*√3/2 ⇒KE=2KO/√3 =2h/√3.
KE=KF=EF =2h/√3.
Найдем сторону основания.Из вершины B опускаем перпендикуляр BN на AD. EF =BN =AB/2 (катет против угла 30°)⇒ AB=2*EF.
---
Sосн =AB*BN =2*EF*EF =2EF² .
Sбок=4*(1/2)AD*KE=2AD*KE =2AB*KE =2*2*EF*KE =4EF².
Sпол = Sосн + Sбок =2EF²+4EF² =6EF²=6*(2h/√3)² =(6*4/3)h²=8h².
ответ: 8h².
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать
Объяснение: