Треугольник АВС, МН-средняя линия=1/2АВ, проводим высоту СК на АВ, О-пересечение СК и МН, АВ=4х, СК=2у, площадь АВС=1/2*АВ*СК=1/2*4х*2у=4ху, треугольник АВС подобен треугольнику СМН по двум равным углам (АВ параллельна МН), угол В=уголСМН, уголА=уголСНМ как соответственные, МН=1/2АВ=4х/2=2х, в подобных треугольниках площади относятся как квадраты соответствующих сторон, АВ²/МН²=площадьАВС/площадьМСН, 16х²/4²=площадьАВС/площадьМСН,, т.е площадь АВС составляет 4 части, а площадь МСН=1 части, на долю АВМН=4-1=3 части=24, 1 часть=24/3=8=площадьМСН
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать
Объяснение: