1. Описанная около данной нам правильной пирамиды сфера в сечении по диагонали основания пирамиды (квадрат) - это описанная около равнобедренного треугольника АМС окружность. Сторона треугольника АС это диагональ квадрата и равна 6√2. Стороны АМ и СМ - ребра пирамиды =5. Есть формула радиуса описанной около равнобедренного треугольника окружности: Ro=a²/√[(2a)²-b²] , где а=АМ=МС=5, b=АС=6√2. Подставляем и получим Ro=25/√(100-72) = 25/√28. Или Ro=25√7/14. Тогда площадь сферы равна Sc=4πR² =4π*25²*7/14²=17500*π/196 ≈ 280,36. Округлим до целых и получим Sc ≈ 280.
2. Угол между прямой BD и плоскостью DMC - это угол между этой прямой и ее проекцией на плоскость DMC.Опустим из точки О, принадлежащей прямой ВD перпендикуляр на плоскость грани DMC. Это будет перпендикуляр ОН на апофему МЕ. Тогда проекцией прямой DО на плоскость грани DMC будет прямая DH, а угол ОDН - искомый угол. ОН - перпендикуляр из прямого угла МОЕ прямоугольного треугольника МОЕ и равен МО*ОЕ/МЕ (по свойствам этого перпендикуляра). МО - высота пирамиды и равна по Пифагору √(МС²-ОС²)=√(25-18)=√7. (ОС=0,5*АС=3√2). МЕ - апофема грани DMC равна по Пифагору √(ОЕ²+МО²)=√(9+7)=4. Тогда ОН=МО*ОЕ/МЕ=√7*3/4. В прямоугольном треугольнике ОНD (<OHD-прямой) синус угла ОDН равен ОН/ОD (OD - гипотенуза) =(√7*3/4)/3√2 = √7/4√2 = √14/8. Угол равен arcSin(√14/8) ≈ arcSin(0,4677). Или ≈28°.
Составим уравнения прямых АВ и СД 1) Прямая АВ проходит через точки А (8; -3) и В(2; 5) у = кх + в Подставляем координаты точек А и В и получаем систему уравнений -3 = к·8 + в 5 = к· 2 + в вычтем из 1-го уравнения 2-е и найдём к -8 = 6к ---> к = -4/3 Длина отрезка АВ равна АВ = √[(2 - 8)² + (5 - (-3))²] = 10 Для противоположной стороны СД проделываем те же действия у = кх + в подставляем координаты точек С и Д 11 = к·10 + в 3 = к· 16 + в вычитаем из 1-го уравнения 2-е 8 = -6к ---> к = -4/3 Длина отрезка СД равна СД = √[(3 - 11)² + (16 - 10)²] = 10 Поскольку угловые коэффициенты (к = -4/3) одинаковые у прямых АВ и СД, то АВ//СД (параллельны!) Длины отрезков АВ и СД также одинаковы АВ = СД = 10
По известной теореме : Если две противоположные стороны четырехугольника равны и параллельны, то этот четырехугольник - параллелограмм, что и требовалось доказать
треугольника окружности: Ro=a²/√[(2a)²-b²] , где а=АМ=МС=5, b=АС=6√2. Подставляем и получим Ro=25/√(100-72) = 25/√28. Или Ro=25√7/14.
Тогда площадь сферы равна Sc=4πR² =4π*25²*7/14²=17500*π/196 ≈ 280,36.
Округлим до целых и получим Sc ≈ 280.
2. Угол между прямой BD и плоскостью DMC - это угол между этой прямой и ее проекцией на плоскость DMC.Опустим из точки О, принадлежащей прямой ВD перпендикуляр на плоскость грани DMC. Это будет перпендикуляр ОН на апофему МЕ. Тогда проекцией прямой DО на плоскость грани DMC будет прямая DH, а угол ОDН - искомый угол.
ОН - перпендикуляр из прямого угла МОЕ прямоугольного треугольника МОЕ и равен МО*ОЕ/МЕ (по свойствам этого перпендикуляра).
МО - высота пирамиды и равна по Пифагору √(МС²-ОС²)=√(25-18)=√7. (ОС=0,5*АС=3√2).
МЕ - апофема грани DMC равна по Пифагору √(ОЕ²+МО²)=√(9+7)=4.
Тогда ОН=МО*ОЕ/МЕ=√7*3/4. В прямоугольном треугольнике ОНD (<OHD-прямой) синус угла ОDН равен ОН/ОD (OD - гипотенуза) =(√7*3/4)/3√2 = √7/4√2 = √14/8.
Угол равен arcSin(√14/8) ≈ arcSin(0,4677). Или ≈28°.
1) Прямая АВ проходит через точки А (8; -3) и В(2; 5)
у = кх + в
Подставляем координаты точек А и В и получаем систему уравнений
-3 = к·8 + в
5 = к· 2 + в
вычтем из 1-го уравнения 2-е и найдём к
-8 = 6к ---> к = -4/3
Длина отрезка АВ равна
АВ = √[(2 - 8)² + (5 - (-3))²] = 10
Для противоположной стороны СД проделываем те же действия
у = кх + в
подставляем координаты точек С и Д
11 = к·10 + в
3 = к· 16 + в
вычитаем из 1-го уравнения 2-е
8 = -6к ---> к = -4/3
Длина отрезка СД равна
СД = √[(3 - 11)² + (16 - 10)²] = 10
Поскольку угловые коэффициенты (к = -4/3) одинаковые у прямых АВ и СД,
то АВ//СД (параллельны!)
Длины отрезков АВ и СД также одинаковы АВ = СД = 10
По известной теореме : Если две противоположные стороны четырехугольника равны и параллельны, то этот четырехугольник - параллелограмм, что и требовалось доказать