Проведём осевое сечение заданной пирамиды перпендикулярно ребру основания. В сечении имеем равнобедренный треугольник ESK. Боковые стороны - это высоты h, основание ЕК равно высоте ромба в основании, высота равна высоте Н пирамиды. Сторона а основания равна: a = EK/sin α = 2h*cos β/sin α. Высота SO = Н пирамиды равна: Н = h*sin β. Площадь основания равна: So = a*EK = ( 2h*cos β/sin α)*( 2h*cos β) = 4h²*cos² β/sin α. Теперь находим искомый объём V пирамиды: V = (1/3)So*H = (1/3)*(4h²*cos² β/sin α)*(h*sin β) = (4/3)h³*cos² β*sin β/sin α.
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°В сечении имеем равнобедренный треугольник ESK. Боковые стороны - это высоты h, основание ЕК равно высоте ромба в основании, высота равна высоте Н пирамиды.
Сторона а основания равна:
a = EK/sin α = 2h*cos β/sin α.
Высота SO = Н пирамиды равна: Н = h*sin β.
Площадь основания равна:
So = a*EK = ( 2h*cos β/sin α)*( 2h*cos β) = 4h²*cos² β/sin α.
Теперь находим искомый объём V пирамиды:
V = (1/3)So*H = (1/3)*(4h²*cos² β/sin α)*(h*sin β) = (4/3)h³*cos² β*sin β/sin α.