а) АВ║А₁В₁ б) ВС║ А₁Д₁ в)СС₁ ∩ В₁С₁ г) АД и СС₁-скрещивающиеся д) Д₁С₁ и ВВ₁-скрещ-ся
е) А₁С ∩ ВД₁
№2 а) т.к. АВСД параллелограмм, то ДС║Ав, но АВ∈ (АВМ), значит по Признаку параллельности прямой и плоскости. (Если прямая,
не лежащая в плоскости, параллельна прямой, лежащей в этой
плоскости, то она параллельна данной плоскости.) ⇒ДС║пл (АВМ)
ч.т.д.
б) ВС и АМ не лежат в одной плоскости
Если одна из двух прямых (у нас АМ) лежит в некоторой плоскости (АВМ), а другая прямая (ВС) пересекает эту плоскость в точке (В), не лежащей на первой прямой, то эти прямые скрещивающиеся (не лежат в одной плоскости). Ч.Т.Д.
№3В треугольнике АСЕ МР-средняя линия, в треугольнике ВСЕ NP-средняя линия,, в треугольнике АВЕ MN-средняя линия, ⇒ MP║FC, NP║BC, MN║ AB/
Но МР∪NP, AC∪BC, но если 2 пересекающиеся прямые одной плоскости соотв параллельны двум пересекающимся прямым другой плоскости, то такие пл-ти параллельны. чтд.
№4 1) провести ЕF 2) провести EQ 3)Из точки Q провести прямую║ЕF, обозначить точку пересечения К 4) Точку К соединить с F Cечение KFEQ
<BMA=<DAM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей АМ. Но < DAM=<BAM, т.к. АМ - биссектриса, значит <BMA=<BAM, и треуг-ик АВМ равнобедренный (т.к. углы при его основании АМ равны). Значит АВ=ВМ. <CMD=<ADM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей DM. Но <ADM=CDM, т.к. DM - биссектриса, значит <CMD=<CDM, и треуг-ик DCM также равнобедренный (углы при его основании DM равны). Т.е. АВ=CD=BM=CM Пусть АВ будет х (соответственно, CD, BM и СМ также будут х). Зная, что AN=10, запишем: АВ=AN-BN, BN=AN-AB=10-x Рассмотрим треуг-ки BNM и CDM. Они равны по второму признаку равенства: сторона и два прилежащих к ней угла одного треуг-ка соответственно равны стороне и двум прилежащим к ней углам другого треуг-ка. В нашем случае: - ВМ=СМ; - <BMN=<CMD как вертикальные углы; - <MBN=<MCD как накрест лежащие углы при пересечении двух параллельных прямых AN и CD секущей ВС. Значит BN=CD=x Выше выведено, что BN=10-x. Приравняем 10-х и х, раз речь идет об одном и том же: 10-х=х 2х=10 х=5 АВ=CD=5 см, AD=BC=5+5=10 см Р ABCD = 2AB+2BC=2*5+2*10=30 см
Объяснение:№1
а) АВ║А₁В₁ б) ВС║ А₁Д₁ в)СС₁ ∩ В₁С₁ г) АД и СС₁-скрещивающиеся д) Д₁С₁ и ВВ₁-скрещ-ся
е) А₁С ∩ ВД₁
№2 а) т.к. АВСД параллелограмм, то ДС║Ав, но АВ∈ (АВМ), значит по Признаку параллельности прямой и плоскости. (Если прямая,
не лежащая в плоскости, параллельна прямой, лежащей в этой
плоскости, то она параллельна данной плоскости.) ⇒ДС║пл (АВМ)
ч.т.д.
б) ВС и АМ не лежат в одной плоскости
Если одна из двух прямых (у нас АМ) лежит в некоторой плоскости (АВМ), а другая прямая (ВС) пересекает эту плоскость в точке (В), не лежащей на первой прямой, то эти прямые скрещивающиеся (не лежат в одной плоскости). Ч.Т.Д.
№3В треугольнике АСЕ МР-средняя линия, в треугольнике ВСЕ NP-средняя линия,, в треугольнике АВЕ MN-средняя линия, ⇒ MP║FC, NP║BC, MN║ AB/
Но МР∪NP, AC∪BC, но если 2 пересекающиеся прямые одной плоскости соотв параллельны двум пересекающимся прямым другой плоскости, то такие пл-ти параллельны. чтд.
№4 1) провести ЕF 2) провести EQ 3)Из точки Q провести прямую║ЕF, обозначить точку пересечения К 4) Точку К соединить с F Cечение KFEQ
< DAM=<BAM, т.к. АМ - биссектриса, значит
<BMA=<BAM, и треуг-ик АВМ равнобедренный (т.к. углы при его основании АМ равны). Значит АВ=ВМ.
<CMD=<ADM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей DM. Но
<ADM=CDM, т.к. DM - биссектриса, значит
<CMD=<CDM, и треуг-ик DCM также равнобедренный (углы при его основании DM равны). Т.е.
АВ=CD=BM=CM
Пусть АВ будет х (соответственно, CD, BM и СМ также будут х). Зная, что AN=10, запишем:
АВ=AN-BN, BN=AN-AB=10-x
Рассмотрим треуг-ки BNM и CDM. Они равны по второму признаку равенства: сторона и два прилежащих к ней угла одного треуг-ка соответственно равны стороне и двум прилежащим к ней углам другого треуг-ка. В нашем случае:
- ВМ=СМ;
- <BMN=<CMD как вертикальные углы;
- <MBN=<MCD как накрест лежащие углы при пересечении двух параллельных прямых AN и CD секущей ВС. Значит
BN=CD=x
Выше выведено, что BN=10-x. Приравняем 10-х и х, раз речь идет об одном и том же:
10-х=х
2х=10
х=5
АВ=CD=5 см, AD=BC=5+5=10 см
Р ABCD = 2AB+2BC=2*5+2*10=30 см