Автомобіль проїхав 300 км на північ із міста А у місто В і 400 км на схід від міста В до С. Чому дорівнює переміщення автомобіля с А в С? Відповідь 500, потрібно докладний рішення з поясненням!!
1)Если в прямоугольном треугольнике есть угол с градусной мерой в 60 градусов, то в нём будет и угол с градусной мерой в 30 градусов, а это значит, что мы имеем гипотенузу, равную 18 см, и катет, лежащий напротив угла в 30 градусов, а, следовательно, он будет равен половине гипотенузы, т.е. 18:2=9 см. Теперь по теореме Пифагора находим второй катет, лежащий напротив угла в 60 градусов: 18^2=9^2+x^2 x=√18^2-9^2=√243=15,6(полное число таково: 15,588457268, так что я его округлил) Таким образом, периметр треугольника равен: 15,6+18+9=42,6 см. Площадь прямоугольного треугольника равна половине произведения его катетов: (15,6*9):2=70,2 см^2 2) Проведём от меньшего основания трапеции высоту к большему. Тогда мы получим прямоугольный треугольник с углами 60,30 и 90(Мы получаем угол в 30 градусов, проведя высоту из угла в 120 градусов, т.е. 120-90, а там уже второй острый угол находится вот так:180-90-30=60) В этом прямоугольном треугольнике катет, лежащий напротив угла в 30 градусов, будет >0, но <8, т.е. 0<x<8. Здесь мы можем брать любое значение, но, к сожалению, ответ не будет одинаковым во всех случаях. У нас не сказано, что данная трапеция равнобедренная или прямоугольная, следовательно, второй тупой и острый угол могут иметь различную градусную величину. Поэтому я возьму размер образованного катета за 5 см, но если взять любое другое значение, то ответ окажется другим. Раз этот катет лежит напротив угла в 30 градусов, то гипотенуза равна 10 см, а второй катет: 10^2-5^2=√75. Этот второй катет является высотой, следовательно, площадь трапеции равна: (18+10):2*√75=(приблизительно!)121 см^2(полное число таково:121,24355653). Найдём во втором прямоугольном треугольнике гипотенузу. Катеты в нём равны 3 см и √75 см. По теореме Пифагора гипотенуза равна:√75+9=√84=(приблизительно!)9,17(полное число таково:9,1651513899) Тогда периметр данной трапеции равен:9,17+18+10+10=47,17 см.
В шар вписана правильная треугольная пирамида, длина ребра основания которой равна 6 см. Вычислите расстояние от центра шара до плоскости боковой грани пирамиды, если объём шара равен 256π /3 см³, а его центр расположен внутри пирамиды.
Обозначим пирамиду КАВС, КН - её высота, АД - диаметр окружности, описанной вокруг основания пирамиды - правильного треугольника АВС, АМ - высота ∆ АВС.
Центр шара -О, ОЕ - искомое расстояние- перпендикуляр к грани КВС .
Пирамида правильная, следовательно, основание её высоты КН расположено в центре описанной вокруг АВС окружности, а центр шара лежит на ее высоте.
АМ=АВ*sin 60º=3√3
АН- радиус описанной вокруг ∆ АВС окружности.
АН=АМ*2/3=2√3
НМ=АМ:3=√3
Объём шара V=4πR³ /3
R³ (шара)=3V/4π
R³=(3*256π:3):4π=64
R=∛64=4
На схеме осевого сечения шара КТ- диаметр шара,
АД хорда ( диаметр описанной вокруг АВС окружности)
НД=АН=2√3
По свойству хорд АН*НД=КН*НТ
Пусть ОН=х
Тогда KH=R+x, TH=R-x
(2√3)²=(4+x)(4-x)
12=16-x²⇒
х=2
Рассмотрим прямоугольные ⊿ КНМ и ⊿ КЕО. Они подобны - имеют общий острый угол при К.
Теперь по теореме Пифагора находим второй катет, лежащий напротив угла в 60 градусов:
18^2=9^2+x^2
x=√18^2-9^2=√243=15,6(полное число таково: 15,588457268, так что я его округлил)
Таким образом, периметр треугольника равен: 15,6+18+9=42,6 см.
Площадь прямоугольного треугольника равна половине произведения его катетов: (15,6*9):2=70,2 см^2
2) Проведём от меньшего основания трапеции высоту к большему. Тогда мы получим прямоугольный треугольник с углами 60,30 и 90(Мы получаем угол в 30 градусов, проведя высоту из угла в 120 градусов, т.е. 120-90, а там уже второй острый угол находится вот так:180-90-30=60)
В этом прямоугольном треугольнике катет, лежащий напротив угла в 30 градусов, будет >0, но <8, т.е. 0<x<8. Здесь мы можем брать любое значение, но, к сожалению, ответ не будет одинаковым во всех случаях. У нас не сказано, что данная трапеция равнобедренная или прямоугольная, следовательно, второй тупой и острый угол могут иметь различную градусную величину. Поэтому я возьму размер образованного катета за 5 см, но если взять любое другое значение, то ответ окажется другим.
Раз этот катет лежит напротив угла в 30 градусов, то гипотенуза равна 10 см, а второй катет: 10^2-5^2=√75.
Этот второй катет является высотой, следовательно, площадь трапеции равна: (18+10):2*√75=(приблизительно!)121 см^2(полное число таково:121,24355653).
Найдём во втором прямоугольном треугольнике гипотенузу.
Катеты в нём равны 3 см и √75 см. По теореме Пифагора гипотенуза равна:√75+9=√84=(приблизительно!)9,17(полное число таково:9,1651513899)
Тогда периметр данной трапеции равен:9,17+18+10+10=47,17 см.
В шар вписана правильная треугольная пирамида, длина ребра основания которой равна 6 см. Вычислите расстояние от центра шара до плоскости боковой грани пирамиды, если объём шара равен 256π /3 см³, а его центр расположен внутри пирамиды.
Обозначим пирамиду КАВС, КН - её высота, АД - диаметр окружности, описанной вокруг основания пирамиды - правильного треугольника АВС, АМ - высота ∆ АВС.
Центр шара -О, ОЕ - искомое расстояние- перпендикуляр к грани КВС .
Пирамида правильная, следовательно, основание её высоты КН расположено в центре описанной вокруг АВС окружности, а центр шара лежит на ее высоте.
АМ=АВ*sin 60º=3√3
АН- радиус описанной вокруг ∆ АВС окружности.
АН=АМ*2/3=2√3
НМ=АМ:3=√3
Объём шара V=4πR³ /3
R³ (шара)=3V/4π
R³=(3*256π:3):4π=64
R=∛64=4
На схеме осевого сечения шара КТ- диаметр шара,
АД хорда ( диаметр описанной вокруг АВС окружности)
НД=АН=2√3
По свойству хорд АН*НД=КН*НТ
Пусть ОН=х
Тогда KH=R+x, TH=R-x
(2√3)²=(4+x)(4-x)
12=16-x²⇒
х=2
Рассмотрим прямоугольные ⊿ КНМ и ⊿ КЕО. Они подобны - имеют общий острый угол при К.
Из подобия следует отношение КО:КМ=ОЕ:НМ
КН=КО+ОН=6
По т.Пифагора
КМ=√(KH²+MH²)=√(36+3)=√39
4:√39=ОЕ:√3
OE=4√3:√39
OE=4/√13 см