1.Пусть дана трапеция АВСД, чтобы найти периметр, НЕ ХВАТАЕТ только стороны АВ, которая равна высоте СТ, проведенной к стороне АД из вершины С. Точка Т лежит на АД, т.к. СТ⊥АД, то по теореме Пифагора из ΔСТД найдем СТ=√(20²-16²)=√(36*4)=12, значит периметр равен
АД+ВС+СД+АВ=25+9+20+12=66/см/
2.Большая диагональ лежит против тупого угла С, тогда меньшая диагональ АС, которую найдем из ΔАВС ;
АС=√(АВ²+ВС²)=√(12²+9²)=√(144+81)=15/см/
3.В треугольнике АСД стороны АС=15; СД=20; АД=25, и связаны между собой таким отношением -квадрат большей стороны равен сумме квадратов двух других, действительно, 25²=20²+15²,625=400+225, но тогда по теореме, обратной теореме Пифагора треугольник АСД - прямоугольный с прямым углом С, а раз так, То АС- расстояние от точки А до прямой СД, это расстояние ρ(A;CD) равно АС=15см
1.Пусть дана трапеция АВСД, чтобы найти периметр, НЕ ХВАТАЕТ только стороны АВ, которая равна высоте СТ, проведенной к стороне АД из вершины С. Точка Т лежит на АД, т.к. СТ⊥АД, то по теореме Пифагора из ΔСТД найдем СТ=√(20²-16²)=√(36*4)=12, значит периметр равен
АД+ВС+СД+АВ=25+9+20+12=66/см/
2.Большая диагональ лежит против тупого угла С, тогда меньшая диагональ АС, которую найдем из ΔАВС ;
АС=√(АВ²+ВС²)=√(12²+9²)=√(144+81)=15/см/
3.В треугольнике АСД стороны АС=15; СД=20; АД=25, и связаны между собой таким отношением -квадрат большей стороны равен сумме квадратов двух других, действительно, 25²=20²+15²,625=400+225, но тогда по теореме, обратной теореме Пифагора треугольник АСД - прямоугольный с прямым углом С, а раз так, То АС- расстояние от точки А до прямой СД, это расстояние ρ(A;CD) равно АС=15см
Биссектрисы двух внешних углов и внутреннего угла треугольника пересекаются в центре вневписанной окружности.
Центр вписанной окружности треугольника (I) является точкой пересечения биссектрис, AI - биссектриса ∠BAC
△BAI=△DAI (по двум сторонам и углу между ними)
∠BIF=∠DIF (смежные с равными)
AF - биссектриса внешнего угла ∠BID треугольника BEI
EF - биссектриса внутреннего угла ∠BEI
F - центр вневписанной окружности △BEI
BA - биссектриса внутреннего угла ∠EBI треугольника BEI
A - центр вневписанной окружности △BEI