Більша основа рівнобічної трапеції 18 см. діагональ - бісектриса гострого кута. знайти меншу основу трапеції,якщо її р=54см
русс:
большая основа равносторонней трапеции 18 см. диагональ - биссектриса острого угла. найти меньшую основу трапеции, если ее р = 54см
Решение.
Треуг. АВС равнобедреннй, поскольку АВ = ВС, значит Угол ВАС = ВСА.
Угол САД = ВСА как накрест лежащие при параллельных прямых ВС и АД и секущей АС. Значит ВАС = 30 градусов, т.е АС является биссектрисой угла ВАД. Тогда угол ВАД = 30 + 30 =60 градусов.
Углы ВАД и АВС являются внутренними односторонними при параллельных прямых ВС и АД и секущей АВ. А сумма внутренних односторонних углов при двух параллельных прямых и секущей равна 180 градусов.
Угол АВС = 180 - 60 = 120 градусов.
Поскольку трапеция равнобокая, то
угол ВАД = СДА = 60 градусов
угол АВС = ВСД = 120 градусов.
Пусть биссектрисы внешних углов при вершинах B и C параллелограмма ABCD пересекаются в точке P, биссектрисы внешних углов при вершинах C и D — в точке Q, внешних углов при вершинах A и D — в точке R, внешних углов при вершинах A и B — в точке S.
Поскольку биссектрисы внутренних односторонних углов при параллельных прямых и секущей перпендикулярны, то PQRS — прямоугольник.
Пусть M — середина BC. Тогда PM — медиана прямоугольного треугольника BPC, поэтому PM = MC. Значит,
< MPC = < PCM = < PCK,
где K — точка на продолжении стороны DC за точку C. Следовательно , PM || CD. Аналогично докажем, что если N — середина AD, то RN = ND и RN || CD. Кроме того , MN || CD и MN = CD. Следовательно, точки M и N лежат на диагонали PR прямоугольника PQRS и
PR = PM + MN + NR = MC + CD + ND = BC + CD.