1) треугольник прямоугольный, т.к. сумма углов треугольника 180 градусов, 180-(25+65)=90-третий угол 2)сумма 2-х острых углов прямоугольного треугольника равна 90 градусов, значит 90-68=22-второй угол 3) т.к. один угол прямоугольного треугольника 60 градусов, то другой - 90-60=30, а против угла=30 лежит меньший катет, равный половине гипотенузы. пусть гипотеза=х,тогда меньший катет-0.5х, получим уравнение х+0.5х=33.6 => х=22.4-гипотеза 4) 9.7-1.5=8.2 5) т.к. прямая пересекает отрезок посередине, то расстояние от прямой до точки N и до точки M - одинаковы, т.е. 14см 6) 1. Если внешний-125, то смежный с ним- 180-125=55, сумма острых углов прямоугольного треугольника равна 90, значит 2-й угол - 90-55=35 2. пусть меньший угол-х, тогда больший-4х,получим уравнение х+4х=90 => х=18,т.е. 1 угол -18, 2-й - 4*18= 72 7) т.к. угол В=60, тогда угол А=90-60=30, ВN-биссектриса угла АВС=>угол NBC= углу АВN=30, рассмотрим треугольник NBC- прямоугольный, значит напротив угла 30 градусов лежит меньший катер, равный половине гипотезы,т.е. гипотеза ВN= 7*2=14, рассмотрим треугольник АВN: угол АВN=30, угол А=30 (по см. ранее)=>треугольник равнобедренный, т.к.углы при основании равны=>стороны ВN= АN=14 АС= СN+ АN=7+14=21
А) Смотри рисунок. Рассмотрим два прямоугольных треугольника АВВ1 и ДСС1. углы АВВ1=ДСС1=90 градусов; углы ВАВ1=СДС1; ВВ1=СС1(как высоты в трапеции). Как известно, для подобия прямоугольных треугольников достаточно, чтобы они имели по равному острому углу и равному катету ⇒ ΔАВВ1=ΔДСС1 ⇒ АВ=СД⇒ трапеция АВСД - равнобедренная.
б) Смотри рисунок. Пусть точка пересечения диагоналей - это О. Рассмотрим треугольники АВО и ДСО. Углы АОВ=ДОВ( как вертикальные); по условию ВД=АС, точка О - точка пересечения⇒ ВО=ОС и АО=ОД. По первому признаку равенства треугольников ΔАВО=ΔДСО⇒АВ=СД⇒трапеция АВСД - равнобедренная.
2)сумма 2-х острых углов прямоугольного треугольника равна 90 градусов, значит 90-68=22-второй угол
3) т.к. один угол прямоугольного треугольника 60 градусов, то другой - 90-60=30, а против угла=30 лежит меньший катет, равный половине гипотенузы. пусть гипотеза=х,тогда меньший катет-0.5х, получим уравнение х+0.5х=33.6 => х=22.4-гипотеза
4) 9.7-1.5=8.2
5) т.к. прямая пересекает отрезок посередине, то расстояние от прямой до точки N и до точки M - одинаковы, т.е. 14см
6) 1. Если внешний-125, то смежный с ним- 180-125=55, сумма острых углов прямоугольного треугольника равна 90, значит 2-й угол - 90-55=35
2. пусть меньший угол-х, тогда больший-4х,получим уравнение х+4х=90 => х=18,т.е. 1 угол -18, 2-й - 4*18= 72
7) т.к. угол В=60, тогда угол А=90-60=30, ВN-биссектриса угла АВС=>угол NBC= углу АВN=30,
рассмотрим треугольник NBC- прямоугольный, значит напротив угла 30 градусов лежит меньший катер, равный половине гипотезы,т.е. гипотеза ВN= 7*2=14,
рассмотрим треугольник АВN: угол АВN=30, угол А=30 (по см. ранее)=>треугольник равнобедренный, т.к.углы при основании равны=>стороны ВN= АN=14
АС= СN+ АN=7+14=21
углы АВВ1=ДСС1=90 градусов; углы ВАВ1=СДС1; ВВ1=СС1(как высоты в трапеции). Как известно, для подобия прямоугольных треугольников достаточно, чтобы они имели по равному острому углу и равному катету ⇒ ΔАВВ1=ΔДСС1 ⇒ АВ=СД⇒
трапеция АВСД - равнобедренная.
б) Смотри рисунок. Пусть точка пересечения диагоналей - это О.
Рассмотрим треугольники АВО и ДСО.
Углы АОВ=ДОВ( как вертикальные); по условию ВД=АС, точка О - точка пересечения⇒ ВО=ОС и АО=ОД.
По первому признаку равенства треугольников ΔАВО=ΔДСО⇒АВ=СД⇒трапеция
АВСД - равнобедренная.